Liu Ying, Li Yuwen, Zhuang Zhenghao, Song Tao
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 201900, China.
Shanghai Robot Industrial Technology Research Institute, Shanghai 200062, China.
Sensors (Basel). 2020 Nov 6;20(21):6341. doi: 10.3390/s20216341.
Robot positioning accuracy plays an important role in industrial automation applications. In this paper, a method is proposed for the improvement of robot accuracy with an optical tracking system that integrates a least-square numerical algorithm for the identification of kinematic parameters. In the process of establishing the system kinematics model, the positioning errors of the tool and the robot base, and the errors of the Denavit-Hartenberg parameters are all considered. In addition, the linear dependence among the parameters is analyzed. Numerical simulation based on a 6-axis UR robot is performed to validate the effectiveness of the proposed method. Then, the method is implemented on the actual robot, and the experimental results show that the robots can reach desired poses with an accuracy of ±0.35 mm for position and ±0.07° for orientation. Benefitting from the optical tracking system, the proposed procedure can be easily automated to improve the robot accuracy for applications requiring high positioning accuracy such as riveting, drill, and precise assembly.
机器人定位精度在工业自动化应用中起着重要作用。本文提出了一种利用光学跟踪系统提高机器人精度的方法,该系统集成了用于识别运动学参数的最小二乘数值算法。在建立系统运动学模型的过程中,考虑了工具和机器人基座的定位误差以及Denavit-Hartenberg参数的误差。此外,还分析了参数之间的线性相关性。基于六轴UR机器人进行了数值模拟,以验证所提方法的有效性。然后,该方法在实际机器人上得以实现,实验结果表明,机器人能够以±0.35毫米的位置精度和±0.07°的姿态精度到达期望位姿。受益于光学跟踪系统,所提程序可轻松实现自动化,以提高机器人在铆接、钻孔和精密装配等高定位精度要求应用中的精度。