Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
Sensors (Basel). 2023 Jun 6;23(12):5368. doi: 10.3390/s23125368.
Precision object handling and manipulation require the accurate positioning of industrial robots. A common practice for performing end effector positioning is to read joint angles and use industrial robot forward kinematics (FKs). However, industrial robot FKs rely on the robot Denavit-Hartenberg (DH) parameter values, which include uncertainties. Sources of uncertainty associated with industrial robot FKs include mechanical wear, manufacturing and assembly tolerances, and robot calibration errors. It is therefore necessary to increase the accuracy of DH parameter values to reduce the impact of uncertainties on industrial robot FKs. In this paper, we use differential evolution, particle swarm optimization, an artificial bee colony, and a gravitational search algorithm to calibrate industrial robot DH parameters. A laser tracker system, Leica AT960-MR, is utilized to register accurate positional measurements. The nominal accuracy of this non-contact metrology equipment is less than 3 μm/m. Metaheuristic optimization approaches such as differential evolution, particle swarm optimization, an artificial bee colony and a gravitational search algorithm are used as optimization methods to perform the calibration using laser tracker position data. It is observed that, using the proposed approach with an artificial bee colony optimization algorithm, the accuracy of industrial robot FKs in terms of mean absolute errors of static and near-static motion over all three dimensions for the test data decreases from its measured value of 75.4 μm to 60.1 μm (a 20.3% improvement).
精密物体的处理和操作需要精确的工业机器人定位。执行末端执行器定位的常见方法是读取关节角度并使用工业机器人正向运动学(FKs)。然而,工业机器人 FKs 依赖于机器人 Denavit-Hartenberg(DH)参数值,其中包括不确定性。与工业机器人 FKs 相关的不确定性来源包括机械磨损、制造和装配公差以及机器人校准误差。因此,有必要提高 DH 参数值的精度,以降低不确定性对工业机器人 FKs 的影响。在本文中,我们使用差分进化、粒子群优化、人工蜂群和引力搜索算法来校准工业机器人 DH 参数。使用激光跟踪器系统 Leica AT960-MR 进行精确的位置测量。该非接触式计量设备的标称精度小于 3μm/m。差分进化、粒子群优化、人工蜂群和引力搜索算法等元启发式优化方法被用作优化方法,使用激光跟踪器位置数据进行校准。观察到,使用带有人工蜂群优化算法的建议方法,测试数据所有三个维度上的静态和近静态运动的工业机器人 FKs 的精度,其均方根误差从其测量值 75.4μm 降低到 60.1μm(提高了 20.3%)。