Jiang Yizhou, Yu Liandong, Jia Huakun, Zhao Huining, Xia Haojie
School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
Sensors (Basel). 2020 Aug 5;20(16):4354. doi: 10.3390/s20164354.
The absolute positioning accuracy of a robot is an important specification that determines its performance, but it is affected by several error sources. Typical calibration methods only consider kinematic errors and neglect complex non-kinematic errors, thus limiting the absolute positioning accuracy. To further improve the absolute positioning accuracy, we propose an artificial neural network optimized by the differential evolution algorithm. Specifically, the structure and parameters of the network are iteratively updated by differential evolution to improve both accuracy and efficiency. Then, the absolute positioning deviation caused by kinematic and non-kinematic errors is compensated using the trained network. To verify the performance of the proposed network, the simulations and experiments are conducted using a six-degree-of-freedom robot and a laser tracker. The robot average positioning accuracy improved from 0.8497 mm before calibration to 0.0490 mm. The results demonstrate the substantial improvement in the absolute positioning accuracy achieved by the proposed network on an industrial robot.
机器人的绝对定位精度是决定其性能的一项重要指标,但它会受到多种误差源的影响。典型的校准方法仅考虑运动学误差,而忽略了复杂的非运动学误差,从而限制了绝对定位精度。为了进一步提高绝对定位精度,我们提出了一种由差分进化算法优化的人工神经网络。具体而言,通过差分进化对网络的结构和参数进行迭代更新,以提高精度和效率。然后,使用训练好的网络对由运动学和非运动学误差引起的绝对定位偏差进行补偿。为了验证所提出网络的性能,使用六自由度机器人和激光跟踪仪进行了仿真和实验。机器人的平均定位精度从校准前的0.8497毫米提高到了0.0490毫米。结果表明,所提出的网络在工业机器人上实现了绝对定位精度的大幅提高。