Saito Noboru, Mori Yuhei, Komatsu Tomoya
Terumo Shonan Center, Kanagawa 259-0151, Japan.
Med Devices (Auckl). 2020 Nov 2;13:365-375. doi: 10.2147/MDER.S275883. eCollection 2020.
Stent flexibility can influence clinical outcome, especially in bifurcation lesions. For instance, an overly rigid stent can impose mechanical stress on the artery at the stent edges and alter both arterial geometry and blood flow dynamics in bifurcations. This study investigated the influence of stent flexibility on vessel geometry, histology, wall stress, and blood flow dynamics in arterial bifurcations.
We compared arterial angulation, stenosis, histopathology, simulated wall shear stress (WSS), and simulated blood flow velocity distribution in swine coronary artery bifurcations following placement of the less flexible Multi-link 8 or more flexible Kaname stent (4.1 ± 0.5 vs 1.5 ± 0.1 mN, p < 0.05, -test). Stents were implanted into six coronary artery bifurcations each using the single-stent crossover technique without side branch strut dilatation. Outcomes were examined after 28 days.
Implantation of both stents significantly increased site angulation (Multi-link 8: 148° ± 8° to 172° ± 2°, p < 0.05, paired -test; Kaname: 152° ± 5° to 164° ± 4°, p < 0.05, paired -test), but the change tended to be greater after Multi-link 8 stent implantation (24° ± 15° vs 11° ± 7°, p = 0.1, -test), suggesting greater straightening of the bifurcation. The Multi-link 8 stent induced greater neointimal thickness than the Kaname stent (0.53 ± 0.3 mm vs 0.26 ± 0.1 mm, p < 0.05, -test). The distribution of neointimal hyperplasia following stent implantation as revealed by longitudinal histopathology matched the distribution of WSS simulated using computational fluid dynamics (CFD). The endothelium at low WSS areas exhibited aberrant cell morphology and leukocyte adhesion. A CFD model of a curved bifurcation suggested that the region of low WSS is expanded by artery straightening.
In bifurcated lesions, stent flexibility influences not only mechanical stress on the artery but also WSS, which may induce local neointimal hyperplasia.
支架柔韧性会影响临床结果,尤其是在分叉病变中。例如,过于刚性的支架会在支架边缘对动脉施加机械应力,并改变分叉处的动脉几何形状和血流动力学。本研究调查了支架柔韧性对动脉分叉处血管几何形状、组织学、壁应力和血流动力学的影响。
我们比较了在植入柔韧性较差的Multi-link 8支架或柔韧性较好的Kaname支架后(4.1±0.5对1.5±0.1 mN,p<0.05,t检验),猪冠状动脉分叉处的动脉角度、狭窄程度、组织病理学、模拟壁面切应力(WSS)和模拟血流速度分布。使用单支架交叉技术将支架分别植入六个冠状动脉分叉处,不进行侧支支柱扩张。28天后检查结果。
两种支架植入后均显著增加了部位角度(Multi-link 8:从148°±8°增加到172°±2°,p<0.05,配对t检验;Kaname:从152°±5°增加到164°±4°,p<0.05,配对t检验),但Multi-link 8支架植入后的变化趋势更大(24°±15°对11°±7°,p = 0.1,t检验),表明分叉处的伸直程度更大。Multi-link 8支架比Kaname支架诱导的新生内膜厚度更大(0.53±0.3 mm对0.26±0.1 mm,p<0.05,t检验)。纵向组织病理学显示的支架植入后新生内膜增生分布与使用计算流体动力学(CFD)模拟的WSS分布相匹配。低WSS区域的内皮表现出异常的细胞形态和白细胞粘附。弯曲分叉的CFD模型表明,低WSS区域会因动脉伸直而扩大。
在分叉病变中,支架柔韧性不仅影响动脉上的机械应力,还影响WSS,这可能会诱导局部新生内膜增生