Kleinstreuer Clement, Hyun Sinjae, Buchanan J R, Longest P W, Archie Joseph P, Truskey George A
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910.
Vascular Surgery, Wake Medical Center, Raleigh, NC 27610.
Crit Rev Biomed Eng. 2017;45(1-6):319-382. doi: 10.1615/CritRevBiomedEng.v45.i1-6.140.
Intimal thickening due to atherosclerotic lesions or intimal hyperplasia in medium to large blood vessels is a major contributor to heart disease, the leading cause of death in the Western World. Balloon angioplasty with stenting, bypass surgery, and endarterectomy (with or without patch reconstruction) are some of the techniques currently applied to occluded blood vessels. On the basis of the preponderance of clinical evidence that disturbed flow patterns play a key role in the onset and progression of atherosclerosis and intimal hyperplasia, it is of interest to analyze suitable hemodynamic wall parameters that indicate susceptible sites of intimal thickening and/or favorable conditions for thrombi formation. These parameters, based on the wall shear stress, wall pressure, or particle deposition, are applied to interpret experimental/clinical observations of intimal thickening. Utilizing the parameters as "indicator" functions, internal branching blood vessel geometries are analyzed and possibly altered for different purposes: early detection of possibly highly stenosed vessel segments, prediction of future disease progression, and vessel redesign to potentially improve long-term patency rates. At the present time, the focus is on the identification of susceptible sites in branching blood vessels and their subsequent redesign, employing hemodynamic wall parameters. Specifically, the time-averaged wall shear stress (WSS), its spatial gradient (WSSG), the oscillatory shear index (OSI), and the wall shear stress angle gradient (WSSAG) are compared with experimental data for an aortoceliac junction. Then, the OSI, wall particle density (WPD), and WSSAG are segmentally averaged for different carotid artery bifurcations and compared with clinical data of intimal thickening. The third branching blood vessel under consideration is the graft-to-vein anastomosis of a vascular access graft Suggested redesigns reduce several hemodynamic parameters (i.e., the WSSG, WSSAG, and normal pressure gradient [NPG]), thereby reducing the likelihood of restenosis, especially near the critical toe region.
中到大血管中因动脉粥样硬化病变或内膜增生导致的内膜增厚是心脏病的主要成因,而心脏病是西方世界的首要死因。球囊血管成形术加支架置入、搭桥手术和动脉内膜切除术(有无补片重建)是目前应用于阻塞血管的一些技术。基于大量临床证据表明紊乱的血流模式在动脉粥样硬化和内膜增生的发生及发展中起关键作用,分析合适的血流动力学壁参数以指示内膜增厚的易感部位和/或血栓形成的有利条件是很有意义的。这些基于壁面切应力、壁面压力或颗粒沉积的参数被用于解释内膜增厚的实验/临床观察结果。将这些参数用作“指标”函数,对内部分支血管几何形状进行分析,并可能出于不同目的进行改变:早期检测可能高度狭窄的血管段、预测未来疾病进展以及重新设计血管以潜在提高长期通畅率。目前,重点在于利用血流动力学壁参数识别分支血管中的易感部位并对其进行后续重新设计。具体而言,将时间平均壁面切应力(WSS)、其空间梯度(WSSG)、振荡切变指数(OSI)和壁面切应力角梯度(WSSAG)与腹主动脉 - 腹腔动脉交界处的实验数据进行比较。然后,对不同颈动脉分叉处的OSI、壁面颗粒密度(WPD)和WSSAG进行分段平均,并与内膜增厚的临床数据进行比较。正在考虑的第三个分支血管是血管通路移植物的移植物 - 静脉吻合处。建议的重新设计降低了几个血流动力学参数(即WSSG、WSSAG和正常压力梯度[NPG]),从而降低了再狭窄的可能性,尤其是在关键的趾部区域附近。