Suppr超能文献

社交媒体与2019冠状病毒病:推特上反隔离评论的特征分析

Social media and COVID-19: Characterizing anti-quarantine comments on Twitter.

作者信息

Karami Amir, Anderson Mackenzie

机构信息

School of Information Science University of South Carolina Columbia South Carolina USA.

出版信息

Proc Assoc Inf Sci Technol. 2020;57(1):e349. doi: 10.1002/pra2.349. Epub 2020 Oct 22.

Abstract

Social media has become a mainstream channel of communication during the COVID-19 pandemic. While some studies have been developed on investigating public opinion on social media data regarding COVID-19 pandemic, there is no study analyzing anti-quarantine comments on social media. This study has collected and analyzed near 80,000 tweets to understand anti-quarantine social comments. Using text mining, we found 11 topics representing different issues such as comparing COVID-19 and flu and health side effects of quarantine. We believe that this study shines a light on public opinion of people who are against quarantine.

摘要

社交媒体已成为新冠疫情期间的主流沟通渠道。虽然已有一些研究致力于调查社交媒体数据中关于新冠疫情的公众舆论,但尚无研究分析社交媒体上的反隔离评论。本研究收集并分析了近8万条推文,以了解反隔离的社会评论。通过文本挖掘,我们发现了11个代表不同问题的主题,如比较新冠病毒和流感以及隔离的健康副作用。我们相信这项研究揭示了反对隔离者的公众舆论。

相似文献

1
Social media and COVID-19: Characterizing anti-quarantine comments on Twitter.
Proc Assoc Inf Sci Technol. 2020;57(1):e349. doi: 10.1002/pra2.349. Epub 2020 Oct 22.
6
Identifying #addiction concerns on twitter during the COVID-19 pandemic: A text mining analysis.
Subst Abus. 2021;42(1):39-46. doi: 10.1080/08897077.2020.1822489. Epub 2020 Sep 24.
7
Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.
J Med Internet Res. 2020 Apr 21;22(4):e19016. doi: 10.2196/19016.
8
Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.
J Med Internet Res. 2020 Nov 25;22(11):e20550. doi: 10.2196/20550.

引用本文的文献

4
COVID-19 Vaccine and Social Media in the U.S.: Exploring Emotions and Discussions on Twitter.
Vaccines (Basel). 2021 Sep 23;9(10):1059. doi: 10.3390/vaccines9101059.
6
Analysis of Social Media Discussions on (#)Diet by Blue, Red, and Swing States in the U.S.
Healthcare (Basel). 2021 Apr 29;9(5):518. doi: 10.3390/healthcare9050518.
7
Identifying and Analyzing Health-Related Themes in Disinformation Shared by Conservative and Liberal Russian Trolls on Twitter.
Int J Environ Res Public Health. 2021 Feb 23;18(4):2159. doi: 10.3390/ijerph18042159.

本文引用的文献

1
Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.
J Med Internet Res. 2020 Apr 21;22(4):e19016. doi: 10.2196/19016.
2
Exploring diseases and syndromes in neurology case reports from 1955 to 2017 with text mining.
Comput Biol Med. 2019 Jun;109:322-332. doi: 10.1016/j.compbiomed.2019.04.008. Epub 2019 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验