Suppr超能文献

二甲双胍通过激活 AMPK 信号通路促进 NDUFA13 表达和线粒体生物发生来保护高糖培养的心肌细胞免受氧化应激。

Metformin protects high glucose‑cultured cardiomyocytes from oxidative stress by promoting NDUFA13 expression and mitochondrial biogenesis via the AMPK signaling pathway.

机构信息

Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China.

Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China.

出版信息

Mol Med Rep. 2020 Dec;22(6):5262-5270. doi: 10.3892/mmr.2020.11599. Epub 2020 Oct 14.

Abstract

Tissue damage in diabetes is at least partly due to elevated reactive oxygen species production by the mitochondrial respiratory chain during hyperglycemia. Sustained hyperglycemia results in mitochondrial dysfunction and the abnormal expression of mitochondrial genes, such as NADH: Ubiquinone oxidoreductase subunit A13 (NDUFA13). Metformin, an AMP‑activated protein kinase (AMPK) activator, protects cardiomyocytes from oxidative stress by improving mitochondrial function; however, the exact underlying mechanisms are not completely understood. The aim of the present study was to investigated the molecular changes and related regulatory mechanisms in the response of H9C2 cardiomyocytes to metformin under high glucose conditions. H9C2 cells were subjected to CCK‑8 assay to assess cell viability. Reactive oxygen species generation was measured with DCFH‑DA assay. Western blotting was used to analyze the expression levels of NDUFA13, AMPK, p‑AMPK and GAPDH. Reverse transcription‑quantitative PCR was used to evaluate the expression levels of mitochondrial genes and transcription factors. It was observed that metformin protected H9C2 cardiomyocytes by suppressing high glucose (HG)‑induced elevated oxidative stress. In addition, metformin stimulated mitochondrial biogenesis, as indicated by increased expression levels of mitochondrial genes (NDUFA1, NDUFA2, NDUFA13 and manganese superoxide dismutase) and mitochondrial biogenesis‑related transcription factors [peroxisome proliferator‑activated receptor‑gamma coactivator‑1α, nuclear respiratory factor (NRF)‑1, and NRF‑2] in the metformin + HG group compared with the HG group. Moreover, metformin promoted mitochondrial NDUFA13 protein expression via the AMPK signaling pathway, which was abolished by pretreatment with the AMPK inhibitor, Compound C. The results suggested that metformin protected cardiomyocytes against HG‑induced oxidative stress via a mechanism involving AMPK, NDUFA13 and mitochondrial biogenesis.

摘要

在高血糖期间,线粒体呼吸链产生的活性氧物质增加至少部分导致糖尿病中的组织损伤。持续的高血糖导致线粒体功能障碍和线粒体基因的异常表达,如烟酰胺腺嘌呤二核苷酸脱氢酶(ubiquinone)氧化还原酶亚基 A13(NDUFA13)。二甲双胍是一种 AMP 激活的蛋白激酶(AMPK)激活剂,通过改善线粒体功能来保护心肌细胞免受氧化应激;然而,确切的潜在机制尚不完全清楚。本研究旨在探讨在高糖条件下,H9C2 心肌细胞对二甲双胍反应的分子变化及相关调节机制。通过 CCK-8 测定法评估细胞活力。使用 DCFH-DA 测定法测量活性氧的产生。使用 Western blot 分析 NDUFA13、AMPK、p-AMPK 和 GAPDH 的表达水平。使用逆转录-定量 PCR 评估线粒体基因和转录因子的表达水平。结果表明,二甲双胍通过抑制高糖(HG)诱导的氧化应激来保护 H9C2 心肌细胞。此外,二甲双胍刺激线粒体生物发生,这表现为线粒体基因(NDUFA1、NDUFA2、NDUFA13 和锰超氧化物歧化酶)和线粒体生物发生相关转录因子[过氧化物酶体增殖物激活受体-γ 共激活因子-1α(PPARGC1A)、核呼吸因子(NRF)-1 和 NRF-2]的表达水平在二甲双胍+HG 组中较 HG 组升高。此外,二甲双胍通过 AMPK 信号通路促进线粒体 NDUFA13 蛋白表达,该作用被 AMPK 抑制剂 Compound C 预处理所阻断。结果表明,二甲双胍通过 AMPK、NDUFA13 和线粒体生物发生机制保护心肌细胞免受 HG 诱导的氧化应激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12f9/7646981/cfcacd0f9249/MMR-22-06-5262-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验