Zhen Yanzhong, Yang Chunming, Shen Huidong, Xue Wenwen, Gu Chunrong, Feng Jinghao, Zhang Yuecheng, Fu Feng, Liang Yucang
College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China.
Phys Chem Chem Phys. 2020 Nov 25;22(45):26278-26288. doi: 10.1039/d0cp02199g.
Photocatalysis with potentially low cost and sustainable utilization is a typically environmentally benign method for the degradation of organic pollutants, but the rational design and fabrication of photocatalysts with high catalytic performance is still an enormous challenge. The efficient segregation of photogenerated electron-hole pairs in photocatalysts is a key and essential factor to decide photocatalytic activity. Herein, a novel Step-scheme (S-scheme) heterojunction photocatalyst, a g-C3N4/Bi2MoO6 (g-CN/BMO) composite, was successfully fabricated using g-C3N4 nanosheet-wrapped Bi2MoO6 microspheres. By adjusting the amount of g-C3N4 in BMO, a series of g-CN/BMO composites was prepared while optimizing posttreatment temperature. The resulting g-CN/BMO indicated well the photocatalytic performance for the degradation of phenol and hydrogen evolution reactions, especially, 100 g of g-CN was integrated into 100 g of the pre-calcined BMO at 200 °C to produce 100% g-CN/BMO-200, showing the highest photocatalytic performance compared to single composite BMO, BMO-200, g-CN, and g-CN/BMO-200 with other mass ratios. Combining the results from the density functional theory calculations and the results of X-ray photoelectron spectroscopy, for S-scheme heterojunction-structured g-CN/BMO-200, the internal electric field-, band edge bending- and coulomb interaction-driven efficient segregation of photogenerated electrons and holes at the interface is elucidated to explain the photocatalytic mechanism, and the resulting holes on the VB of BMO and electrons on the CB of g-CN are responsible for the improvement of the photocatalytic performance. This study revealed that for the S-scheme g-CN/BMO composite the internal electric field, band edge bending and coulomb interaction at the interface between g-CN and BMO can not only promote the effective segregation of electrons and holes, but also retain stronger redox ability. Such an investigation provides a facile and simple strategy to fabricate novel S-scheme heterojunction-structured photocatalysts for solar energy conversion.
光催化具有潜在的低成本和可持续利用性,是一种典型的环境友好型有机污染物降解方法,但具有高催化性能的光催化剂的合理设计与制备仍然是一个巨大的挑战。光催化剂中光生电子 - 空穴对的有效分离是决定光催化活性的关键和重要因素。在此,一种新型的阶梯式(S - 型)异质结光催化剂,即g - C3N4/Bi2MoO6(g - CN/BMO)复合材料,通过g - C3N4纳米片包裹Bi2MoO6微球成功制备。通过调节BMO中g - C3N4的量,制备了一系列g - CN/BMO复合材料,同时优化了后处理温度。所得的g - CN/BMO在苯酚降解和析氢反应中表现出良好的光催化性能,特别是,将100 g的g - CN与100 g在200°C预煅烧的BMO混合制备出100%的g - CN/BMO - 200,与单一的复合BMO、BMO - 200、g - CN以及其他质量比的g - CN/BMO - 200相比,其表现出最高的光催化性能。结合密度泛函理论计算结果和X射线光电子能谱结果,对于S - 型异质结结构的g - CN/BMO - 200,阐明了界面处由内建电场、能带边缘弯曲和库仑相互作用驱动的光生电子和空穴的有效分离,以解释光催化机理,并且BMO价带上产生的空穴和g - CN导带上的电子是光催化性能提高的原因。该研究表明,对于S - 型g - CN/BMO复合材料,g - CN和BMO界面处的内建电场、能带边缘弯曲和库仑相互作用不仅可以促进电子和空穴的有效分离,还能保留较强的氧化还原能力。这样的研究为制备用于太阳能转换的新型S - 型异质结结构光催化剂提供了一种简便易行的策略。