School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1998-2010. doi: 10.1016/j.jcis.2021.10.004. Epub 2021 Oct 6.
The self-assembled Bi-based metal-organic framework microspheres (Bi-MOF-M) by nanorods were successfully constructed by the glycol-assisted solvothermal method. Using Bi-MOF-M as a homologous template, a petal-like BiMoO (BMO) layer was grown in situ on its surface to facilely construct a chemically bonded heterojunction interface, realizing a micro/nano hierarchical flower spherical-like Bi-MOF-M/BMO heterojunction composite photocatalyst. The as-prepared series of Bi-MOF-M/BMO-x catalysts show higher visible light catalytic performance for tetracycline hydrochloride (TC) degradation. Among them, Bi-MOF-M/BMO-0.3 has the optimal catalytic activity, and the degradation efficiency can reach 93.6% within 60 min of light irradiation with superior mineralization ability and structural stability, and the degradation kinetic constant is 6.12 times that of Bi-MOF-M and 5.69 times that of BMO, respectively. The homologously grown Bi-MOF-M/BMO chemically bonded heterojunction not only effectively broadens the spectral absorption range and enhances the absorption intensity but also promotes the efficient separation of photogenerated carriers through forming a favorable interfacial electric field and well-matched energy band alignment. A reasonable mechanism for the visible light degradation of TC by the Bi-MOF-M/BMO composite catalyst with h and O as the main reactive species is proposed. The micro/nano hierarchical structure of the Bi-MOF/BMO catalyst allows it to exhibit the easy recovery advantage of micron-scale materials while maintaining the high catalytic activity of the primary nano-components.
通过乙二醇辅助溶剂热法成功构建了由纳米棒自组装的基于铋的金属有机骨架微球(Bi-MOF-M)。以 Bi-MOF-M 为同系模板,在其表面原位生长出花瓣状 BiMoO(BMO)层,从而方便地构建了化学键合的异质结界面,实现了微/纳分级花球状 Bi-MOF-M/BMO 异质结复合光催化剂。所制备的一系列 Bi-MOF-M/BMO-x 催化剂在盐酸四环素(TC)降解方面表现出更高的可见光催化性能。其中,Bi-MOF-M/BMO-0.3 具有最佳的催化活性,在可见光照射 60 分钟内降解效率可达 93.6%,具有优异的矿化能力和结构稳定性,其降解动力学常数分别是 Bi-MOF-M 的 6.12 倍和 BMO 的 5.69 倍。同生长的 Bi-MOF-M/BMO 化学键合异质结不仅有效拓宽了光谱吸收范围,增强了吸收强度,而且通过形成有利的界面电场和良好的能带匹配,促进了光生载流子的有效分离。提出了以 h 和 O 为主要活性物质的 Bi-MOF-M/BMO 复合催化剂可见光降解 TC 的合理机制。Bi-MOF/BMO 催化剂的微/纳分级结构使其具有微米级材料的易于回收优势,同时保持了初级纳米组件的高催化活性。