Suppr超能文献

乳腺癌相关淋巴水肿风险模型的建立与验证。

Development and Validation of a Risk Model for Breast Cancer-Related Lymphedema.

机构信息

Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.

Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.

出版信息

JAMA Netw Open. 2020 Nov 2;3(11):e2024373. doi: 10.1001/jamanetworkopen.2020.24373.

Abstract

IMPORTANCE

Approximately 1 in 5 patients with breast cancer who undergo axillary lymph node dissection will develop lymphedema. To appropriately triage and monitor these patients for timely diagnosis and treatment, robust risk models are required.

OBJECTIVE

To evaluate the prognostic value of mammographic breast density in estimating lymphedema severity.

DESIGN, SETTING, AND PARTICIPANTS: This prognostic study collected data from July 16, 2018, to March 3, 2020, from the electronic health records of patients of the Cancer Rehabilitation and Survivorship Program at the Princess Margaret Cancer Centre in Toronto, Ontario, Canada. Participants included women who had completed curative treatment for a first diagnosis of breast cancer and who were referred to the program. Also included were a sample of patients in the general breast oncology population who were receiving follow-up care at the center during the same period but who were not referred to the program. All patients attended follow-up appointments at the Princess Margaret Cancer Centre from January 1, 2016, to May 1, 2018. The cohort was randomly split 2:1 to group patients into a training cohort and a validation cohort.

EXPOSURES

Participant demographic and clinical characteristics included age, sex, body mass index (BMI), medical history, cancer characteristics, and cancer treatment.

MAIN OUTCOMES AND MEASURES

Spearman correlation coefficient between measured and predicted volume of lymphedema was calculated. Area under the curve (AUC) values were generated for predicting the occurrence of at least mild lymphedema (volume, >200 mL) and severe lymphedema (volume, >500 mL) at the time of initial lymphedema diagnosis.

RESULTS

A total of 373 female patients (median [interquartile range] age, 52.3 [45.9-60.1] years) were eligible for this analysis. Multivariate linear regression identified 3 patient factors (age, BMI, and mammographic breast density), 1 cancer factor (number of pathological lymph nodes), and 1 treatment factor (axillary lymph node dissection) as independent prognostic variables. In validation testing, Spearman correlation revealed a statistically significant moderate correlation (coefficient, 0.42; 95% CI, 0.26-0.56; P < .001) between measured volume and predicted volume of lymphedema. The AUC values were 0.72 (95% CI, 0.60-0.83) for predicting the occurrence of mild lymphedema and 0.83 (95% CI, 0.74-0.93) for severe lymphedema.

CONCLUSIONS AND RELEVANCE

This prognostic study found that patients with low breast density appeared to be at a higher risk of developing severe lymphedema. The finding suggests that by combining breast density with established risk factors a multivariate linear regression model could be used to predict the development of lymphedema and provide volumetric estimates of lymphedema severity in patients with breast cancer.

摘要

重要性

大约每 5 名接受腋窝淋巴结清扫术的乳腺癌患者中就有 1 名会发生淋巴水肿。为了对这些患者进行适当的分诊和监测,以便及时诊断和治疗,需要有强大的风险模型。

目的

评估乳腺 X 线摄影乳房密度在估计淋巴水肿严重程度方面的预后价值。

设计、设置和参与者:这项预后研究于 2018 年 7 月 16 日至 2020 年 3 月 3 日从加拿大安大略省多伦多玛格丽特公主癌症中心癌症康复和生存计划的电子健康记录中收集数据。参与者包括接受过首次乳腺癌治愈性治疗且被转介到该计划的女性。还包括了在同一时期在该中心接受随访护理但未被转介到该计划的一般乳腺癌肿瘤患者的样本。所有患者均于 2016 年 1 月 1 日至 2018 年 5 月 1 日在玛格丽特公主癌症中心接受随访预约。队列被随机分为 2:1 分为训练队列和验证队列。

暴露因素

参与者的人口统计学和临床特征包括年龄、性别、体重指数(BMI)、病史、癌症特征和癌症治疗。

主要结果和措施

计算了测量体积和预测体积之间的斯皮尔曼相关系数。生成了曲线下面积(AUC)值,用于预测在初始淋巴水肿诊断时至少发生轻度淋巴水肿(体积,>200 毫升)和重度淋巴水肿(体积,>500 毫升)的发生情况。

结果

共有 373 名女性患者(中位数[四分位数范围]年龄,52.3[45.9-60.1]岁)符合本分析条件。多变量线性回归确定了 3 个患者因素(年龄、BMI 和乳腺 X 线摄影乳房密度)、1 个癌症因素(病理性淋巴结数量)和 1 个治疗因素(腋窝淋巴结清扫术)为独立的预后变量。在验证测试中,斯皮尔曼相关性显示测量体积和预测体积之间存在统计学上显著的中度相关性(系数,0.42;95%置信区间,0.26-0.56;P < .001)。AUC 值为 0.72(95%置信区间,0.60-0.83),用于预测轻度淋巴水肿的发生,0.83(95%置信区间,0.74-0.93)用于预测重度淋巴水肿的发生。

结论和相关性

这项预后研究发现,乳房密度低的患者似乎有更高的发生重度淋巴水肿的风险。这一发现表明,通过将乳房密度与已确立的风险因素相结合,可以使用多变量线性回归模型来预测淋巴水肿的发生,并为乳腺癌患者提供淋巴水肿严重程度的体积估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验