Suppr超能文献

基于 FPGA 的 FSCV 深度神经网络:开发、剪枝和加速。

An FSCV Deep Neural Network: Development, Pruning, and Acceleration on an FPGA.

出版信息

IEEE J Biomed Health Inform. 2021 Jun;25(6):2248-2259. doi: 10.1109/JBHI.2020.3037366. Epub 2021 Jun 3.

Abstract

Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique for measuring rapid changes in the extracellular concentration of neurotransmitters within the brain. Due to its fast scan rate and large output-data size, the current analysis of the FSCV data is often conducted on a computer external to the FSCV device. Moreover, the analysis is semi-automated and requires a good understanding of the characteristics of the underlying chemistry to interpret, making it unsuitable for real-time implementation on low-resource FSCV devices. This paper presents a hardware-software co-design approach for the analysis of FSCV data. Firstly, a deep neural network (DNN) is developed to predict the concentration of a dopamine solution and identify the data recording electrode. Secondly, the DNN is pruned to decrease its computation complexity, and a custom overlay is developed to implement the pruned DNN on a low-resource FPGA-based platform. The pruned DNN attains a recognition accuracy of 97.2% with a compression ratio of 3.18. When the DNN overlay is implemented on a PYNQ-Z2 platform, it achieves the execution time of 13 ms and power consumption of 1.479 W on the entire PYNQ-Z2 board. This study demonstrates the possibility of operating the DNN for FSCV data analysis on portable FPGA-based platforms.

摘要

快速扫描循环伏安法(FSCV)是一种用于测量大脑中神经递质的细胞外浓度快速变化的电化学技术。由于其快速扫描率和大数据输出量,目前对 FSCV 数据的分析通常在 FSCV 设备外部的计算机上进行。此外,该分析是半自动的,需要对底层化学特性有很好的理解才能进行解释,因此不适合在资源有限的 FSCV 设备上实时实现。本文提出了一种用于 FSCV 数据分析的软硬件协同设计方法。首先,开发了一个深度神经网络(DNN)来预测多巴胺溶液的浓度并识别数据记录电极。其次,对 DNN 进行剪枝以降低其计算复杂度,并开发了一个自定义覆盖层来在基于低资源 FPGA 的平台上实现剪枝后的 DNN。剪枝后的 DNN 实现了 97.2%的识别准确率,压缩比为 3.18。当 DNN 覆盖层在 PYNQ-Z2 平台上实现时,它在整个 PYNQ-Z2 板上实现了 13ms 的执行时间和 1.479W 的功耗。本研究证明了在基于 FPGA 的便携式平台上运行 DNN 进行 FSCV 数据分析的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验