Hong Danfeng, Yokoya Naoto, Chanussot Jocelyn, Xu Jian, Zhu Xiao Xiang
IEEE Trans Cybern. 2021 Jul;51(7):3602-3615. doi: 10.1109/TCYB.2020.3028931. Epub 2021 Jun 23.
Conventional nonlinear subspace learning techniques (e.g., manifold learning) usually introduce some drawbacks in explainability (explicit mapping) and cost effectiveness (linearization), generalization capability (out-of-sample), and representability (spatial-spectral discrimination). To overcome these shortcomings, a novel linearized subspace analysis technique with spatial-spectral manifold alignment is developed for a semisupervised hyperspectral dimensionality reduction (HDR), called joint and progressive subspace analysis (JPSA). The JPSA learns a high-level, semantically meaningful, joint spatial-spectral feature representation from hyperspectral (HS) data by: 1) jointly learning latent subspaces and a linear classifier to find an effective projection direction favorable for classification; 2) progressively searching several intermediate states of subspaces to approach an optimal mapping from the original space to a potential more discriminative subspace; and 3) spatially and spectrally aligning a manifold structure in each learned latent subspace in order to preserve the same or similar topological property between the compressed data and the original data. A simple but effective classifier, that is, nearest neighbor (NN), is explored as a potential application for validating the algorithm performance of different HDR approaches. Extensive experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely used HS datasets: 1) Indian Pines (92.98%) and 2) the University of Houston (86.09%) in comparison with previous state-of-the-art HDR methods. The demo of this basic work (i.e., ECCV2018) is openly available at https://github.com/danfenghong/ECCV2018_J-Play.
传统的非线性子空间学习技术(如流形学习)通常在可解释性(显式映射)、成本效益(线性化)、泛化能力(样本外)和可表示性(空间-光谱鉴别)方面存在一些缺点。为了克服这些缺点,针对半监督高光谱降维(HDR)开发了一种具有空间-光谱流形对齐的新型线性化子空间分析技术,称为联合渐进子空间分析(JPSA)。JPSA通过以下方式从高光谱(HS)数据中学习高级的、语义上有意义的联合空间-光谱特征表示:1)联合学习潜在子空间和线性分类器,以找到有利于分类的有效投影方向;2)逐步搜索子空间的几个中间状态,以接近从原始空间到潜在的更具鉴别力的子空间的最优映射;3)在每个学习到的潜在子空间中对流形结构进行空间和光谱对齐,以保持压缩数据和原始数据之间相同或相似的拓扑属性。探索了一种简单但有效的分类器,即最近邻(NN),作为验证不同HDR方法算法性能的潜在应用。进行了广泛的实验,以证明所提出的JPSA在两个广泛使用的HS数据集上的优越性和有效性:1)印第安纳松树数据集(92.98%)和2)休斯顿大学数据集(86.09%),并与以前的最先进的HDR方法进行了比较。这项基础工作(即ECCV2018)的演示可在https://github.com/danfenghong/ECCV2018_J-Play上公开获取。