Suppr超能文献

解读印度新冠病毒病(COVID-19)病死率各异的现象:经验教训与未来方向

Demystifying the varying case fatality rates (CFR) of COVID-19 in India: Lessons learned and future directions.

作者信息

Asirvatham Edwin Sam, Lakshmanan Jeyaseelan, Sarman Charishma Jones, Joy Melvin

机构信息

Health Systems Research India Initiative (HSRII), Trivandrum, India.

Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India.

出版信息

J Infect Dev Ctries. 2020 Oct 31;14(10):1128-1135. doi: 10.3855/jidc.13340.

Abstract

INTRODUCTION

At the end of the second week of June 2020, the SARS-CoV-2 responsible for COVID-19 infected above 7.5 million people and killed over 400,000 worldwide. Estimation of case fatality rate (CFR) and determining the associated factors are critical for developing targeted interventions.

METHODOLOGY

The state-level adjusted case fatality rate (aCFR) was estimated by dividing the cumulative number of deaths on a given day by the cumulative number confirmed cases 8 days before, which is the average time-lag between diagnosis and death. We conducted fractional regression analysis to determine the predictors of aCFR.

RESULTS

As of 13 June 2020, India reported 225 COVID-19 cases per million population (95% CI:224-226); 6.48 deaths per million population (95% CI:6.34-6.61) and an aCFR of 3.88% (95% CI:3.81-3.97) with wide variation between states. High proportion of urban population and population above 60 years were significantly associated with increased aCFR (p=0.08, p=0.05), whereas, high literacy rate and high proportion of women were associated with reduced aCFR (p<0.001, p=0.03). The higher number of cases per million population (p=0.001), prevalence of diabetes and hypertension (p=0.012), cardiovascular diseases (p=0.05), and any cancer (p<0.001) were significantly associated with increased aCFR. The performance of state health systems and proportion of public health expenditure were not associated with aCFR.

CONCLUSIONS

Socio-demographic factors and burden of non-communicable diseases (NCDs) were found to be the predictors of aCFR. Focused strategies that would ensure early identification, testing and effective targeting of non-literate, elderly, urban population and people with comorbidities are critical to control the pandemic and fatalities.

摘要

引言

2020年6月的第二周周末,导致COVID-19的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在全球感染了750多万人,并造成40多万人死亡。估计病死率(CFR)并确定相关因素对于制定有针对性的干预措施至关重要。

方法

通过将某一天的累计死亡人数除以8天前的累计确诊病例数来估计国家级调整病死率(aCFR),8天是诊断和死亡之间的平均时间间隔。我们进行了分数回归分析以确定aCFR的预测因素。

结果

截至2020年6月13日,印度报告每百万人口中有225例COVID-19病例(95%置信区间:224-226);每百万人口中有6.48例死亡(95%置信区间:6.34-6.61),aCFR为3.88%(95%置信区间:3.81-3.97),各邦之间存在很大差异。城市人口比例高和60岁以上人口比例高与aCFR升高显著相关(p=0.08,p=0.05),而识字率高和女性比例高与aCFR降低相关(p<0.001,p=0.03)。每百万人口中病例数较多(p=0.001)、糖尿病和高血压患病率(p=0.012)、心血管疾病(p=0.05)以及任何癌症(p<0.001)与aCFR升高显著相关。邦卫生系统的绩效和公共卫生支出比例与aCFR无关。

结论

社会人口因素和非传染性疾病(NCDs)负担被发现是aCFR的预测因素。确保对文盲、老年人、城市人口和合并症患者进行早期识别、检测和有效靶向的重点策略对于控制疫情和死亡至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验