Suppr超能文献

2019 年冠状病毒病(COVID-19):按国家划分的病死率变化驱动因素的建模研究。

Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Variation in Case Fatality Rate by Country.

机构信息

Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Int J Environ Res Public Health. 2020 Nov 5;17(21):8189. doi: 10.3390/ijerph17218189.

Abstract

The novel Severe Acute Respiratory Syndrome Coronavirus-2 has led to a global pandemic in which case fatality rate (CFR) has varied from country to country. This study aims to identify factors that may explain the variation in CFR across countries. We identified 24 potential risk factors affecting CFR. For all countries with over 5000 reported COVID-19 cases, we used country-specific datasets from the WHO, the OECD, and the United Nations to quantify each of these factors. We examined univariable relationships of each variable with CFR, as well as correlations among predictors and potential interaction terms. Our final multivariable negative binomial model included univariable predictors of significance and all significant interaction terms. Across the 39 countries under consideration, our model shows COVID-19 case fatality rate was best predicted by time to implementation of social distancing measures, hospital beds per 1000 individuals, percent population over 70 years, CT scanners per 1 million individuals, and (in countries with high population density) smoking prevalence. Our model predicted an increased CFR for countries that waited over 14 days to implement social distancing interventions after the 100th reported case. Smoking prevalence and percentage population over the age of 70 years were also associated with higher CFR. Hospital beds per 1000 and CT scanners per million were identified as possible protective factors associated with decreased CFR.

摘要

新型严重急性呼吸综合征冠状病毒导致了一场全球大流行,病死率(CFR)因国家而异。本研究旨在确定可能解释各国 CFR 差异的因素。我们确定了 24 个可能影响 CFR 的潜在风险因素。对于所有报告 COVID-19 病例超过 5000 例的国家,我们使用世卫组织、经合组织和联合国的特定国家数据集来量化这些因素中的每一个。我们检查了每个变量与 CFR 的单变量关系,以及预测因素之间的相关性和潜在的交互项。我们的最终多变量负二项模型包括单变量预测因素和所有显著的交互项。在考虑的 39 个国家中,我们的模型表明,COVID-19 病死率最好由实施社会隔离措施的时间、每千人口的医院床位、70 岁以上人口的百分比、每百万人口的 CT 扫描仪以及(在人口密度高的国家)吸烟率来预测。我们的模型预测,在报告第 100 例病例后超过 14 天实施社会隔离干预的国家,CFR 会增加。吸烟率和 70 岁以上人口比例也与较高的 CFR 相关。每千人口的医院床位和每百万人口的 CT 扫描仪被确定为与降低 CFR 相关的可能保护因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed4d/7664233/aa9b24520fc4/ijerph-17-08189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验