Suppr超能文献

用于放射治疗切伦科夫成像的增强型 CMOS 相机的量子探测效率。

Detective quantum efficiency of intensified CMOS cameras for Cherenkov imaging in radiotherapy.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America.

DoseOptics LLC, Lebanon, NH 03766, United States of America.

出版信息

Phys Med Biol. 2020 Nov 12;65(22):225013. doi: 10.1088/1361-6560/abb0c5.

Abstract

In this study the metric of detective quantum efficiency (DQE) was applied to Cherenkov imaging systems for the first time, and results were compared for different detector hardware, gain levels and with imaging processing for noise suppression. Intensified complementary metal oxide semiconductor cameras using different image intensifier designs (Gen3 and Gen2+) were used to image Cherenkov emission from a tissue phantom in order to measure the modulation transfer function (MTF) and noise power spectrum (NPS) of the systems. These parameters were used to calculate the DQE for varying acquisition settings and image processing steps. MTF curves indicated that the Gen3 system had superior contrast transfer and spatial resolution than the Gen2+ system, with [Formula: see text] values of 0.52 mm and 0.31 mm, respectively. With median filtering for noise suppression, these values decreased to 0.50 mm and 0.26 mm. The maximum NPS values for the Gen3 and Gen2+ systems at high gain were 1.3 × 10 mm and 9.1 × 10 mm respectively, representing a 14x decrease in noise power for the Gen2+ system. Both systems exhibited increased NPS intensity with increasing gain, while median filtering lowered the NPS. The DQE of each system increased with increasing gain, and at the maximum gain levels the Gen3 system had a low-frequency DQE of 0.31%, while the Gen2+ system had a value of 1.44%. However, at a higher frequency of 0.4 mm, these values became 0.54% and 0.03%. Filtering improved DQE for the Gen3 system and reduced DQE for the Gen2+ system and had a mix of detrimental and beneficial qualitative effects by decreasing the spatial resolution and sharpness but also substantially lowering noise. This methodology for DQE measurement allowed for quantitative comparison between Cherenkov imaging cameras and improvements to their sensitivity, and yielded the first formal assessment of Cherenkov image formation efficiency.

摘要

在这项研究中,量子探测效率(DQE)首次应用于切伦科夫成像系统,比较了不同探测器硬件、增益水平和用于噪声抑制的成像处理的结果。使用不同像增强器设计(Gen3 和 Gen2+)的增强型互补金属氧化物半导体相机用于对组织体模中的切伦科夫发射进行成像,以测量系统的调制传递函数(MTF)和噪声功率谱(NPS)。这些参数用于计算不同采集设置和图像处理步骤的 DQE。MTF 曲线表明,Gen3 系统具有优于 Gen2+系统的对比度传递和空间分辨率,分别为 [Formula: see text] 值为 0.52mm 和 0.31mm。通过中值滤波进行噪声抑制,这些值分别降低至 0.50mm 和 0.26mm。在高增益时,Gen3 和 Gen2+系统的最大 NPS 值分别为 1.3×10mm 和 9.1×10mm,这意味着 Gen2+系统的噪声功率降低了 14 倍。随着增益的增加,两个系统的 NPS 强度都增加了,而中值滤波降低了 NPS。每个系统的 DQE 随着增益的增加而增加,在最大增益水平下,Gen3 系统的低频 DQE 为 0.31%,而 Gen2+系统的 DQE 为 1.44%。然而,在 0.4mm 的更高频率下,这些值变为 0.54%和 0.03%。滤波提高了 Gen3 系统的 DQE,并降低了 Gen2+系统的 DQE,通过降低空间分辨率和锐度产生了有益和有害的定性影响,但也大大降低了噪声。这种 DQE 测量方法允许对切伦科夫成像相机进行定量比较,并提高其灵敏度,并首次对切伦科夫图像形成效率进行了正式评估。

相似文献

1
Detective quantum efficiency of intensified CMOS cameras for Cherenkov imaging in radiotherapy.
Phys Med Biol. 2020 Nov 12;65(22):225013. doi: 10.1088/1361-6560/abb0c5.
2
Mobile C-Arm with a CMOS detector: Technical assessment of fluoroscopy and Cone-Beam CT imaging performance.
Med Phys. 2018 Dec;45(12):5420-5436. doi: 10.1002/mp.13244. Epub 2018 Nov 13.
4
Characterizing a novel scintillating glass for application to megavoltage cone-beam computed tomography.
Med Phys. 2019 Mar;46(3):1323-1330. doi: 10.1002/mp.13355. Epub 2019 Feb 14.
5
Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography.
Phys Med Biol. 2009 Mar 21;54(6):1743-55. doi: 10.1088/0031-9155/54/6/022. Epub 2009 Feb 25.
7
An experimental method to directly measure DQE[Formula: see text] at k  =  0 for 2D x-ray imaging systems.
Phys Med Biol. 2019 Apr 4;64(7):075013-75013. doi: 10.1088/1361-6560/ab10a2.
9
MTF and DQE enhancement using an apodized-aperture x-ray detector design.
Med Phys. 2017 Sep;44(9):4525-4535. doi: 10.1002/mp.12420. Epub 2017 Aug 12.

引用本文的文献

2
Cherenkov Imaged Bio-Morphological Features Verify Patient Positioning With Deformable Tissue Translocation in Breast Radiation Therapy.
Adv Radiat Oncol. 2024 Nov 19;10(4):101684. doi: 10.1016/j.adro.2024.101684. eCollection 2025 Apr.
3
Noise & mottle suppression methods for cumulative Cherenkov images of radiation therapy delivery.
Phys Med Biol. 2024 Nov 12;69(22):225015. doi: 10.1088/1361-6560/ad8c93.
5
Comparison of surface dose during whole breast radiation therapy on Halcyon and TrueBeam using Cherenkov imaging.
Proc SPIE Int Soc Opt Eng. 2023 Jan-Feb;12371. doi: 10.1117/12.2652588. Epub 2023 Mar 6.
6
Remote dose imaging from Cherenkov light using spatially resolved CT calibration in breast radiotherapy.
Med Phys. 2022 Jun;49(6):4018-4025. doi: 10.1002/mp.15614. Epub 2022 Mar 28.
7
Color Cherenkov imaging of clinical radiation therapy.
Light Sci Appl. 2021 Nov 4;10(1):226. doi: 10.1038/s41377-021-00660-0.
10
Visual Isocenter Position Enhanced Review (VIPER): a Cherenkov imaging-based solution for MR-linac daily QA.
Med Phys. 2021 Jun;48(6):2750-2759. doi: 10.1002/mp.14892. Epub 2021 May 9.

本文引用的文献

1
Imaging Cherenkov photon emissions in radiotherapy with a Geiger-mode gated quanta image sensor.
Opt Lett. 2019 Sep 15;44(18):4546-4549. doi: 10.1364/OL.44.004546.
3
Assessment of imaging Cherenkov and scintillation signals in head and neck radiotherapy.
Phys Med Biol. 2019 Jul 18;64(14):145021. doi: 10.1088/1361-6560/ab25a3.
4
Rapid Multisite Remote Surface Dosimetry for Total Skin Electron Therapy: Scintillator Target Imaging.
Int J Radiat Oncol Biol Phys. 2019 Mar 1;103(3):767-774. doi: 10.1016/j.ijrobp.2018.10.030. Epub 2018 Nov 10.
6
Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.
Med Phys. 2018 Jun;45(6):2647-2659. doi: 10.1002/mp.12919. Epub 2018 May 3.
7
Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence.
Phys Med Biol. 2018 Apr 20;63(8):085019. doi: 10.1088/1361-6560/aab83b.
8
Cherenkov video imaging allows for the first visualization of radiation therapy in real time.
Int J Radiat Oncol Biol Phys. 2014 Jul 1;89(3):615-22. doi: 10.1016/j.ijrobp.2014.01.046. Epub 2014 Mar 28.
9
Optical artefact characterization and correction in volumetric scintillation dosimetry.
Phys Med Biol. 2014 Jan 6;59(1):23-42. doi: 10.1088/0031-9155/59/1/23. Epub 2013 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验