Suppr超能文献

将临床前啮齿动物运动代谢研究结果转化为人类健康应用的障碍。

Barriers in translating preclinical rodent exercise metabolism findings to human health.

机构信息

Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.

Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.

出版信息

J Appl Physiol (1985). 2021 Jan 1;130(1):182-192. doi: 10.1152/japplphysiol.00683.2020. Epub 2020 Nov 12.

Abstract

Physical inactivity and low aerobic capacity are primary drivers of chronic disease pathophysiology and are independently associated with all-cause mortality. Conversely, increased physical activity and exercise are central to metabolic disease prevention and longevity. Although these relationships are well characterized in the literature, what remains incompletely understood are the mechanisms by which physical activity/exercise prevents disease. Given methodological constraints of clinical research, investigators must often rely on preclinical rodent models to investigate these potential underlying mechanisms. However, there are several key barriers to applying exercise metabolism findings from rodent models to human health. These barriers include housing temperature, nutrient metabolism, exercise modality, exercise testing, and sex differences. Increased awareness and understanding of these barriers will enhance the ability to impact human health through more appropriate experimental design and interpretation of data within the context of these factors.

摘要

身体活动不足和低有氧能力是慢性病病理生理学的主要驱动因素,并且与全因死亡率独立相关。相反,增加身体活动和运动是代谢性疾病预防和长寿的核心。尽管这些关系在文献中得到了很好的描述,但身体活动/运动预防疾病的机制仍不完全清楚。鉴于临床研究的方法学限制,研究人员通常必须依赖于临床前啮齿动物模型来研究这些潜在的机制。然而,将来自啮齿动物模型的运动代谢研究结果应用于人类健康存在几个关键障碍。这些障碍包括住房温度、营养代谢、运动方式、运动测试和性别差异。提高对这些障碍的认识和理解,将增强通过更合适的实验设计和在这些因素的背景下对数据的解释来影响人类健康的能力。

相似文献

1
Barriers in translating preclinical rodent exercise metabolism findings to human health.
J Appl Physiol (1985). 2021 Jan 1;130(1):182-192. doi: 10.1152/japplphysiol.00683.2020. Epub 2020 Nov 12.
2
Preclinical rodent models of physical inactivity-induced muscle insulin resistance: challenges and solutions.
J Appl Physiol (1985). 2021 Mar 1;130(3):537-544. doi: 10.1152/japplphysiol.00954.2020. Epub 2020 Dec 24.
4
The Impact of Exercise in Rodent Models of Chronic Pain.
Curr Osteoporos Rep. 2018 Aug;16(4):344-359. doi: 10.1007/s11914-018-0461-9.
6
Physical Activity and Health in Chronic Kidney Disease.
Contrib Nephrol. 2021;199:43-55. doi: 10.1159/000517696. Epub 2021 Aug 3.
7
Lack of exercise is a major cause of chronic diseases.
Compr Physiol. 2012 Apr;2(2):1143-211. doi: 10.1002/cphy.c110025.
8
Interventions for promoting habitual exercise in people living with and beyond cancer.
Cochrane Database Syst Rev. 2013 Sep 24(9):CD010192. doi: 10.1002/14651858.CD010192.pub2.
9
Waging war on modern chronic diseases: primary prevention through exercise biology.
J Appl Physiol (1985). 2000 Feb;88(2):774-87. doi: 10.1152/jappl.2000.88.2.774.

引用本文的文献

3
Animal Models of Exercise and Cardiometabolic Disease.
Circ Res. 2025 Jul 7;137(2):139-162. doi: 10.1161/CIRCRESAHA.124.325704. Epub 2025 Jul 3.
5
Does Exercise Regulate Autophagy in Humans? A Systematic Review and Meta-Analysis.
Autophagy Rep. 2023 Mar 17;2(1):2190202. doi: 10.1080/27694127.2023.2190202. eCollection 2023.
6
Loss of ovarian function prevents exercise-induced activation of hepatic mitophagic flux.
Am J Physiol Endocrinol Metab. 2025 Jun 1;328(6):E869-E884. doi: 10.1152/ajpendo.00107.2025. Epub 2025 Apr 28.
7
Biomarkers of aging: from molecules and surrogates to physiology and function.
Physiol Rev. 2025 Jul 1;105(3):1609-1694. doi: 10.1152/physrev.00045.2024. Epub 2025 Mar 20.
8
9
Effects of time-restricted feeding (TRF)-model of intermittent fasting on adipose organ: a narrative review.
Eat Weight Disord. 2024 Dec 24;29(1):77. doi: 10.1007/s40519-024-01709-w.

本文引用的文献

1
Difference in Housing Temperature-Induced Energy Expenditure Elicits Sex-Specific Diet-Induced Metabolic Adaptations in Mice.
Obesity (Silver Spring). 2020 Oct;28(10):1922-1931. doi: 10.1002/oby.22925. Epub 2020 Aug 28.
2
Reappraisal of the optimal fasting time for insulin tolerance tests in mice.
Mol Metab. 2020 Dec;42:101058. doi: 10.1016/j.molmet.2020.101058. Epub 2020 Jul 31.
3
Compensatory eating behaviors in male and female rats in response to exercise training.
Am J Physiol Regul Integr Comp Physiol. 2020 Aug 1;319(2):R171-R183. doi: 10.1152/ajpregu.00259.2019. Epub 2020 Jun 17.
5
Housing temperature influences exercise training adaptations in mice.
Nat Commun. 2020 Mar 25;11(1):1560. doi: 10.1038/s41467-020-15311-y.
6
Association of Daily Step Count and Step Intensity With Mortality Among US Adults.
JAMA. 2020 Mar 24;323(12):1151-1160. doi: 10.1001/jama.2020.1382.
7
A comparison of the metabolic effects of treadmill and wheel running exercise in mouse model.
Lab Anim Res. 2020 Feb 7;36:3. doi: 10.1186/s42826-019-0035-8. eCollection 2020.
8
Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses.
Scand J Med Sci Sports. 2020 Mar;30(3):472-484. doi: 10.1111/sms.13590. Epub 2019 Dec 4.
9
Sex Differences in Morphological and Functional Aspects of Exercise-Induced Cardiac Hypertrophy in a Rat Model.
Front Physiol. 2019 Jul 12;10:889. doi: 10.3389/fphys.2019.00889. eCollection 2019.
10
Housing temperature affects the acute and chronic metabolic adaptations to exercise in mice.
J Physiol. 2019 Sep;597(17):4581-4600. doi: 10.1113/JP278221. Epub 2019 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验