Department of Radiology, Stanford University, Stanford, CA, United States of America.
Department of Radiological Sciences, University of California, Los Angeles, CA, United States of America.
PLoS One. 2020 Nov 12;15(11):e0241996. doi: 10.1371/journal.pone.0241996. eCollection 2020.
Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers.
Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized.
Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p<0.001). E2A also changed significantly between early systole, late systole, and diastasis (27.7 [20.8, 35.1]° vs 45.2 [42.1, 49]° vs 20.7 [16.6, 26.4]°, p<0.001).
We demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.
心肌细胞的组织和功能是心脏功能的基础,但这些细胞在收缩和充盈过程中的体内迁移仍然难以探测。在此,采用一种新的触发延迟(TD)侦察序列,在三个不同的心脏相位获取高的平面内分辨率(1.6mm)自旋回波(SE)心脏扩散张量成像(cDTI)。目的是描述健康志愿者在整个心动周期中心肌细胞的组织和迁移。
对 9 名健康志愿者在三个不同的心脏相位(早期收缩、晚期收缩和舒张期)进行 cDTI 成像。该序列采用自由呼吸自旋回波(SE)cDTI 方案(b 值=350s/mm2,12 个扩散编码方向,8 个重复),在 3T 下采集高分辨率图像(1.6x1.6x8mm3),大约 7 分钟/心动周期。在左心室(LV)中,特征化了螺旋角(HA)、螺旋角范围(HAR)、E2 角(E2A)、横向角(TA)、平均扩散系数(MD)、扩散张量特征值(λ1-2-3)和分数各向异性(FA)。
来自患者特定 TD 侦察序列的图像表明,SE cDTI 采集在早期收缩、晚期收缩和舒张期分别在 78%、100%和 67%的情况下是可行的。在中心室水平,在 HAR 中观察到早期收缩和晚期收缩之间的迁移(报告为中位数[IQR])(76.9[72.6,80.5]°与 96.6[85.9,100.3]°,p<0.001)。E2A 也在早期收缩、晚期收缩和舒张期之间发生显著变化(27.7[20.8,35.1]°与 45.2[42.1,49]°与 20.7[16.6,26.4]°,p<0.001)。
我们证明了使用多相和高分辨率 cDTI 探测心肌细胞迁移是可能的。在健康志愿者中,在收缩过程中,聚集的心肌细胞更倾向于纵向重新定向,而心肌薄片在心肌壁增厚过程中向径向倾斜。这些观察结果为收缩期心肌微结构的三维迁移提供了新的见解。