The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.
Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
J Physiol. 2021 Feb;599(4):1335-1354. doi: 10.1113/JP280749. Epub 2020 Dec 4.
We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma-associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε-transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies' oxygen sensitivity is independent of PKCε-TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen-induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε-TRPV1 pathway, systemic delivery of a PKCε-blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin.
The autonomic nervous system orchestrates organ-specific, systemic and behavioural responses to inflammation. Recently, we demonstrated a vital role for lysophosphatidic acid in stimulating the primary autonomic oxygen chemoreceptors, the carotid bodies, in parasympathetic-mediated asthmatic airway hyperresponsiveness. However, the cacophony of stimulatory factors and cellular mechanisms of carotid body activation are unknown. Therefore, we set out to determine the intracellular signalling involved in carotid body-mediated sensing of asthmatic blood-borne inflammatory mediators. We employed a range of in vitro and rat in situ preparations, site-directed mutagenesis, patch-clamp, nerve recordings and pharmacological inhibition to assess cellular signalling. We show that the carotid bodies are also sensitive to asthma-associated prototypical Th2 cytokines which elicit sensory nerve excitation. This provides additional asthmatic ligands contributing to the previously established reflex arc resulting in efferent vagal activity and asthmatic bronchoconstriction. This novel sensing role for the carotid body is mediated by a PKCε-dependent stimulation of transient receptor potential vanilloid 1 (TRPV1), likely via TRPV1 phosphorylation at sites T704 and S502. Importantly, carotid body oxygen sensing was unaffected by blocking either PKCε or TRPV1. Further, we demonstrate that systemic PKCε blockade reduces asthmatic respiratory distress in response to allergen and airway hyperresponsiveness. These discoveries support an inflammation-dependent, oxygen-independent function for the carotid body and suggest that targeting PKCε provides a novel therapeutic option to abate allergic airway disease without altering life-saving autonomic hypoxic reflexes.
我们之前已经证明,溶血磷脂酸对颈动脉体的刺激会引发迷走神经传出活动的反射性刺激,足以导致哮喘大鼠的支气管收缩。在这里,我们表明,与哮喘相关的典型 Th2 细胞因子的病理生理浓度也会刺激颈动脉体。这些哮喘细胞因子对颈动脉体的刺激涉及 PKCε-瞬时受体电位香草酸 1(TRPV1)信号机制,可能依赖于 TRPV1 S502 和 T704 磷酸化位点。由于颈动脉体的氧敏感性与 PKCε-TRPV1 信号无关,全身性阻断 PKCε 可能成为减少变应原诱导的哮喘性支气管收缩的新的治疗靶点。与阻断 PKCε-TRPV1 通路的治疗潜力一致,全身性给予 PKCε 阻断肽可抑制变应原引起的哮喘性呼吸窘迫,并降低气道对缓激肽的高反应性。
自主神经系统协调炎症引起的器官特异性、系统性和行为反应。最近,我们证明了溶血磷脂酸在刺激副交感神经介导的哮喘气道高反应性中的主要自主氧化学感受器颈动脉体中的重要作用。然而,颈动脉体激活的刺激性因素和细胞机制的不和谐仍然未知。因此,我们着手确定参与颈动脉体介导的哮喘血源性炎症介质感知的细胞内信号。我们使用了一系列体外和大鼠原位制剂、定点突变、膜片钳、神经记录和药理学抑制来评估细胞信号。我们表明,颈动脉体也对与哮喘相关的典型 Th2 细胞因子敏感,这些细胞因子会引起感觉神经兴奋。这为先前建立的反射弧提供了额外的哮喘配体,导致传出迷走神经活动和哮喘性支气管收缩。颈动脉体的这种新的传感作用是由 PKCε 依赖性刺激瞬时受体电位香草酸 1(TRPV1)介导的,可能通过 TRPV1 在 T704 和 S502 位点的磷酸化。重要的是,阻断 PKCε 或 TRPV1 均不影响颈动脉体的氧敏感性。此外,我们还证明了全身性 PKCε 阻断可减少变应原引起的哮喘呼吸窘迫和气道高反应性。这些发现支持颈动脉体的炎症依赖性、氧独立性功能,并表明靶向 PKCε 提供了一种新的治疗选择,可以减轻过敏性气道疾病,而不会改变拯救生命的自主缺氧反射。