Suppr超能文献

一种用于评估塔古斯河流域(西班牙)水政策措施对生态系统响应的机器学习模型。

A machine learning model to assess the ecosystem response to water policy measures in the Tagus River Basin (Spain).

机构信息

Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Calle José Antonio Nováis 12, 28040 Madrid, Spain; Water Observatory, Botín Foundation, Calle de Castelló 18, 28001 Madrid, Spain.

Escuela Politécnica Superior, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain.

出版信息

Sci Total Environ. 2021 Jan 1;750:141252. doi: 10.1016/j.scitotenv.2020.141252. Epub 2020 Aug 1.

Abstract

Anthropogenic activities are seriously endangering the conservation of biodiversity worldwide, calling for urgent actions to mitigate their impact on ecosystems. We applied machine learning techniques to predict the response of freshwater ecosystems to multiple anthropogenic pressures, with the goal of informing the definition of water policy targets and management measures to recover and protect aquatic biodiversity. Random Forest and Gradient Boosted Regression Trees algorithms were used for the modelling of the biological indices of macroinvertebrates and diatoms in the Tagus river basin (Spain). Among the anthropogenic stressors considered as explanatory variables, the categories of land cover in the upstream catchment area and the nutrient concentrations showed the highest impact on biological communities. The model was then used to predict the biological response to different nutrient concentrations in river water, with the goal of exploring the effect of different regulatory thresholds on the ecosystem status. Specifically, we considered the maximum nutrient concentrations set by the Spanish legislation, as well as by the legislation of other European Union Member States. According to our model, the current nutrient thresholds in Spain ensure values of biological indices consistent with the good ecological status in only about 60% of the total number of water bodies. By applying more restrictive nutrient concentrations, the number of water bodies with biological indices in good status could increase by almost 40%. Moreover, coupling more restrictive nutrient thresholds with measures that improve the riparian habitat yields up to 85% of water bodies with biological indices in good status, thus proving to be a key approach to restore the status of the ecosystem.

摘要

人为活动严重威胁着全球生物多样性的保护,呼吁采取紧急行动减轻其对生态系统的影响。我们应用机器学习技术来预测淡水生态系统对多种人为压力的响应,旨在为制定水政策目标和管理措施提供信息,以恢复和保护水生生物多样性。随机森林和梯度提升回归树算法被用于塔霍河流域(西班牙)的大型无脊椎动物和硅藻生物指标建模。在所考虑的作为解释变量的人为压力因素中,上游集水区的土地覆盖类别和营养浓度对生物群落的影响最大。然后,该模型被用于预测河水不同营养浓度下的生物响应,以探索不同监管阈值对生态系统状况的影响。具体来说,我们考虑了西班牙立法以及其他欧盟成员国立法规定的最大营养浓度。根据我们的模型,西班牙目前的营养阈值仅确保了约 60%的水体的生物指标处于良好生态状态。通过应用更严格的营养浓度,可以将生物指标处于良好状态的水体数量增加近 40%。此外,将更严格的营养阈值与改善河岸生境的措施相结合,可以使 85%的水体具有良好的生物指标,从而证明这是恢复生态系统状况的关键方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验