Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea.
Nat Commun. 2020 Nov 12;11(1):5748. doi: 10.1038/s41467-020-19573-4.
The optical and electronic performance of quantum dots (QDs) are affected by their size distribution and structural quality. Although the synthetic strategies for size control are well established and widely applicable to various QD systems, the structural characteristics of QDs, such as morphology and crystallinity, are tuned mostly by trial and error in a material-specific manner. Here, we show that reaction temperature and precursor reactivity, the two parameters governing the surface-reaction kinetics during growth, govern the structural quality of QDs. For conventional precursors, their reactivity is determined by their chemical structure. Therefore, a variation of precursor reactivity requires the synthesis of different precursor molecules. As a result, existing precursor selections often have significant gaps in reactivity or require synthesis of precursor libraries comprising a large number of variants. We designed a sulfur precursor employing a boron-sulfur bond, which enables controllable modulation of their reactivity using commercially available Lewis bases. This precursor chemistry allows systematic optimization of the reaction temperature and precursor reactivity using a single precursor and grows high-quality QDs from cores of various sizes and materials. This work provides critical insights into the nanoparticle growth process and precursor designs, enabling the systematic preparation of high-quality QD of any sizes and materials.
量子点 (QD) 的光学和电子性能受到其尺寸分布和结构质量的影响。虽然用于尺寸控制的合成策略已经成熟并广泛适用于各种 QD 体系,但 QD 的结构特征,如形态和结晶度,主要通过特定于材料的反复试验进行调整。在这里,我们表明,反应温度和前体反应性,这两个控制生长过程中表面反应动力学的参数,控制着 QD 的结构质量。对于传统的前体,它们的反应性取决于它们的化学结构。因此,前体反应性的变化需要合成不同的前体分子。结果,现有的前体选择在反应性方面往往存在显著差距,或者需要合成包含大量变体的前体库。我们设计了一种采用硼-硫键的硫前体,这使得可以使用商业上可用的路易斯碱来控制其反应性。这种前体化学允许使用单一前体系统地优化反应温度和前体反应性,并从各种尺寸和材料的核生长高质量的 QD。这项工作为纳米颗粒生长过程和前体设计提供了重要的见解,能够系统地制备任何尺寸和材料的高质量 QD。