文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分析物介导的纳米颗粒的形成和生长用于化学传感器和生物传感器的开发。

Analyte-mediated formation and growth of nanoparticles for the development of chemical sensors and biosensors.

机构信息

Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.

Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.

出版信息

Mikrochim Acta. 2022 Oct 28;189(11):434. doi: 10.1007/s00604-022-05536-7.


DOI:10.1007/s00604-022-05536-7
PMID:36307660
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9616756/
Abstract

The cornerstone of nanomaterial-based sensing systems is the synthesis of nanoparticles with appropriate surface functionalization that ensures their stability and determines their reactivity with organic or inorganic analytes. To accomplish these requirements, various compounds are used as additives or growth factors to regulate the properties of the synthesized nanoparticles and their reactivity with the target analytes. A different rationale is to use the target analytes as additives or growth agents to control the formation and properties of nanoparticles. The main difference is that the analyte recognition event occurs before or during the formation of nanoparticles and it is based on the reactivity of the analytes with the precursor materials of the nanoparticles (e.g., metal ions, reducing agents, and coatings). The transition from the ionic (or molecular) state of the precursor materials to ordered nanostructured assemblies is used for sensing and signal transduction for the qualitative detection and the quantitative determination of the target analytes, respectively. This review focuses on assays that are based on analyte-mediated regulation of nanoparticles' formation and differentiate them from standard nanoparticle-based assays which rely on pre-synthesized nanoparticles. Firstly, the principles of analyte-mediated nanomaterial sensors are described and then they are discussed with emphasis on the sensing strategies, the signal transduction mechanisms, and their applications. Finally, the main advantages, as well as the limitations of this approach, are discussed and compared with assays that rely on pre-synthesized nanoparticles in order to highlight the major advances accomplished with this type of nano-sensors and elucidate challenges and opportunities for further evolving new nano-sensing strategies.

摘要

基于纳米材料的传感系统的基石是合成具有适当表面功能化的纳米粒子,这确保了它们的稳定性,并决定了它们与有机或无机分析物的反应性。为了实现这些要求,各种化合物被用作添加剂或生长因子,以调节合成纳米粒子的性质及其与目标分析物的反应性。另一种不同的原理是使用目标分析物作为添加剂或生长剂来控制纳米粒子的形成和性质。主要区别在于,分析物的识别事件发生在纳米粒子形成之前或期间,并且基于分析物与纳米粒子的前体材料(例如金属离子、还原剂和涂层)的反应性。从前驱体材料的离子(或分子)状态到有序的纳米结构组装的转变用于定性检测和定量测定目标分析物的传感和信号转导。本综述重点介绍基于分析物介导的纳米粒子形成调控的分析方法,并将其与依赖于预合成纳米粒子的标准纳米粒子基分析方法区分开来。首先,描述了分析物介导的纳米材料传感器的原理,然后重点讨论了它们的传感策略、信号转导机制及其应用。最后,讨论了这种方法的主要优点和局限性,并与依赖于预合成纳米粒子的分析方法进行了比较,以便突出这种类型的纳米传感器所取得的主要进展,并阐明进一步发展新的纳米传感策略的挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/97b6f3b2e28e/604_2022_5536_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/bb1b6ba595d0/604_2022_5536_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/5f3ab3d735ca/604_2022_5536_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/6618ee6b1dfe/604_2022_5536_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/97b6f3b2e28e/604_2022_5536_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/bb1b6ba595d0/604_2022_5536_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/5f3ab3d735ca/604_2022_5536_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/6618ee6b1dfe/604_2022_5536_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/9616756/97b6f3b2e28e/604_2022_5536_Fig4_HTML.jpg

相似文献

[1]
Analyte-mediated formation and growth of nanoparticles for the development of chemical sensors and biosensors.

Mikrochim Acta. 2022-10-28

[2]
Chemiresistive sensing with chemically modified metal and alloy nanoparticles.

Small. 2011-11-4

[3]
Trends and challenges of refractometric nanoplasmonic biosensors: a review.

Anal Chim Acta. 2013-11-7

[4]
Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.

Acc Chem Res. 2016-9-26

[5]
Nanomaterials for IoT Sensing Platforms and Point-of-Care Applications in South Korea.

Sensors (Basel). 2022-1-13

[6]
Recent advances in nanostructured chemosensors and biosensors.

Analyst. 2009-9-2

[7]
Electrochemical Affinity Assays/Sensors: Brief History and Current Status.

Annu Rev Anal Chem (Palo Alto Calif). 2021-7-27

[8]
Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science.

Chem Rev. 2017-10-19

[9]
Interfacially formed organized planar inorganic, polymeric and composite nanostructures.

Adv Colloid Interface Sci. 2004-11-29

[10]
Two-dimensional inorganic nanosheets: production and utility in the development of novel electrochemical (bio)sensors and gas-sensing applications.

Mikrochim Acta. 2021-1-2

引用本文的文献

[1]
Sensitive and Cost-Effective Tools in the Detection of Ovarian Cancer Biomarkers.

Anal Sci Adv. 2024-10-24

[2]
Localized surface plasmon resonance sensing of Trenbolone acetate dopant using silver nanoparticles.

Sci Rep. 2024-3-8

[3]
Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam.

Sensors (Basel). 2023-9-20

[4]
Palladium Nanoparticles Grafted onto Phytochemical Functionalized Biochar: A Sustainable Nanozyme for Colorimetric Sensing of Glucose and Glutathione.

Molecules. 2023-9-18

[5]
In situ enzymatic generation of Au/Pt nanoparticles as an analytical photometric system: proof of concept determination of tyramine.

Mikrochim Acta. 2023-3-6

[6]
Progress of Endogenous and Exogenous Nanoparticles for Cancer Therapy and Diagnostics.

Genes (Basel). 2023-1-19

本文引用的文献

[1]
Gold nanoparticle based colorimetric sensing strategy for the determination of reducing sugars.

Food Chem. 2021-7-30

[2]
Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds.

Biosens Bioelectron. 2021-3-1

[3]
Controllable modulation of precursor reactivity using chemical additives for systematic synthesis of high-quality quantum dots.

Nat Commun. 2020-11-12

[4]
Alkaline Phosphatase-Triggered in Situ Formation of Silicon-Containing Nanoparticles for a Fluorometric and Colorimetric Dual-Channel Immunoassay.

Anal Chem. 2020-3-17

[5]
Generic Assay of Sulfur-Containing Compounds Based on Kinetics Inhibition of Gold Nanoparticle Photochemical Growth.

ACS Omega. 2018-12-7

[6]
The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles.

Chem Rev. 2019-3-28

[7]
Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples.

Food Res Int. 2019-2-6

[8]
Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices.

Anal Chim Acta. 2018-11-10

[9]
Nanomaterial enabled sensors for environmental contaminants.

J Nanobiotechnology. 2018-11-22

[10]
New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent.

J Colloid Interface Sci. 2018-3-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索