Barhoum Ahmed, Jeevanandam Jaison, Rastogi Amit, Samyn Pieter, Boluk Yaman, Dufresne Alain, Danquah Michael K, Bechelany Mikhael
Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
Nanoscale. 2020 Nov 26;12(45):22845-22890. doi: 10.1039/d0nr04795c.
A huge variety of plants are harvested worldwide and their different constituents can be converted into a broad range of bionanomaterials. In parallel, much research effort in materials science and engineering is focused on the formation of nanoparticles and nanostructured materials originating from agricultural residues. Cellulose (40-50%), hemicellulose (20-40%), and lignin (20-30%) represent major plant ingredients and many techniques have been described that separate the main plant components for the synthesis of nanocelluloses, nano-hemicelluloses, and nanolignins with divergent and controllable properties. The minor components, such as essential oils, could also be used to produce non-toxic metal and metal oxide nanoparticles with high bioavailability, biocompatibility, and/or bioactivity. This review describes the chemical structure, the physical and chemical properties of plant cell constituents, different techniques for the synthesis of nanocelluloses, nanohemicelluloses, and nanolignins from various lignocellulose sources and agricultural residues, and the extraction of volatile oils from plants as well as their use in metal and metal oxide nanoparticle production and emulsion preparation. Furthermore, details about the formation of activated carbon nanomaterials by thermal treatment of lignocellulose materials, a few examples of mineral extraction from agriculture waste for nanoparticle fabrication, and the emerging applications of plant-based nanomaterials in different fields, such as biotechnology and medicine, environment protection, environmental remediation, or energy production and storage, are also included. This review also briefly discusses the recent developments and challenges of obtaining nanomaterials from plant residues, and the issues surrounding toxicity and regulation.
全球范围内收获了各种各样的植物,其不同成分可转化为种类繁多的生物纳米材料。与此同时,材料科学与工程领域的许多研究工作都集中在源自农业废弃物的纳米颗粒和纳米结构材料的形成上。纤维素(40 - 50%)、半纤维素(20 - 40%)和木质素(20 - 30%)是植物的主要成分,已有许多技术可用于分离主要植物成分,以合成具有不同且可控特性的纳米纤维素、纳米半纤维素和纳米木质素。植物中的次要成分,如香精油,也可用于生产具有高生物利用度、生物相容性和/或生物活性的无毒金属及金属氧化物纳米颗粒。本文综述了植物细胞成分的化学结构、物理和化学性质,从各种木质纤维素来源和农业废弃物合成纳米纤维素、纳米半纤维素和纳米木质素的不同技术,以及从植物中提取挥发油及其在金属和金属氧化物纳米颗粒生产与乳液制备中的应用。此外,还包括了通过对木质纤维素材料进行热处理形成活性炭纳米材料的细节、从农业废弃物中提取矿物用于纳米颗粒制造的一些实例,以及植物基纳米材料在生物技术和医学、环境保护、环境修复或能源生产与存储等不同领域的新兴应用。本文还简要讨论了从植物残渣中获取纳米材料的最新进展和挑战,以及围绕毒性和监管的问题。