Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
School of Chemical & Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea.
Bioresour Technol. 2021 Jan;320(Pt A):124350. doi: 10.1016/j.biortech.2020.124350. Epub 2020 Nov 2.
The electrochemical conversion of CO can include renewable surplus electricity storage and CO utilisation. This review focuses on the microbial CO electrobiorefinery based on microbial electrosynthesis (MES) which merges electrochemical and microbial conversion to produce biofuels and higher-value chemicals. In this review, recent developments are discussed about bioelectrochemical conversion of CO into biofuels and chemicals in MES via microbial CO-fixation and electricity utilisation reactions. In addition, this review examines technical approaches to overcome the current limitations of MES including the following: engineering of the biocathode, application of electron mediators, and reactor optimisation, among others. An in-depth discussion of strategies for the CO electrobiorefinery is presented, including the integration of the biocathode with inorganic catalysts, screening of novel electroactive microorganisms, and metabolic engineering to improve target productivity from CO.
电化学转化 CO 可以包括可再生剩余电量存储和 CO 利用。本综述重点介绍了基于微生物电合成(MES)的微生物 CO 电生物炼制,它将电化学和微生物转化相结合,以生产生物燃料和高价值化学品。在本综述中,讨论了最近在通过微生物 CO 固定和电力利用反应将 CO 电化学转化为 MES 中的生物燃料和化学品方面的进展。此外,本综述还考察了克服 MES 当前限制的技术方法,包括生物阴极的工程设计、电子介体的应用和反应器优化等。深入讨论了 CO 电生物炼制的策略,包括将生物阴极与无机催化剂集成、筛选新型电活性微生物以及代谢工程以提高 CO 的目标生产力。