Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
Chemosphere. 2023 Dec;344:140251. doi: 10.1016/j.chemosphere.2023.140251. Epub 2023 Sep 26.
Large emissions of atmospheric carbon dioxide (CO) are causing climatic and environmental problems. It is crucial to capture and utilize the excess CO through diverse methods, among which the microbial electrosynthesis (MES) system has become an attractive and promising technology to mitigate greenhouse effects while reducing CO to high-value chemicals. However, the biological conversion and metabolic pathways through microbial catalysis have not been clearly elucidated. This review first introduces the main acetogenic bacteria for CO reduction and extracellular electron transfer mechanisms in MES. It then intensively analyzes the CO bioconversion pathways and carbon chain elongation processes in MES, together with energy supply and utilization. The factors affecting MES performance, including physical, chemical, and biological aspects, are summarized, and the strategies to promote and regulate bioconversion in MES are explored. Finally, challenges and perspectives concerning microbial electrochemical carbon sequestration are proposed, and suggestions for future research are also provided. This review provides theoretical foundation and technical support for further development and industrial application of MES for CO reduction.
大气二氧化碳(CO)的大量排放正在引发气候和环境问题。通过各种方法来捕获和利用多余的 CO 至关重要,其中微生物电合成(MES)系统已成为一种有吸引力且有前途的技术,可以减轻温室效应,同时将 CO 还原为高价值化学品。然而,微生物催化的生物转化和代谢途径尚不清楚。本综述首先介绍了用于 CO 还原的主要产乙酸菌和 MES 中的细胞外电子传递机制。然后,它深入分析了 MES 中的 CO 生物转化途径和碳链延伸过程,以及能量的供应和利用。总结了影响 MES 性能的因素,包括物理、化学和生物学方面,并探讨了促进和调节 MES 中生物转化的策略。最后,提出了微生物电化学碳固存面临的挑战和展望,并为未来的研究提供了建议。本综述为 MES 用于 CO 还原的进一步发展和工业应用提供了理论基础和技术支持。