Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany.
Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124 Pisa, Italy.
J Chem Phys. 2020 Nov 14;153(18):184113. doi: 10.1063/5.0022677.
Subsystem time-dependent density-functional theory (sTDDFT) making use of approximate non-additive kinetic energy (NAKE) functionals is known to be capable of describing excitation energy transfer processes in a variety of applications. Here, we show that sTDDFT, especially when combined with projection-based embedding (PbE), can be employed for the entire range of photo-induced electronic couplings essential for modeling photophysical properties of complex chemical and biological systems and therefore represents a complete toolbox for this class of problems. This means that it is capable of capturing the interaction/coupling associated with local- and charge-transfer (CT) excitons. However, this requires the choice of a reasonable diabatic basis. We therefore propose different diabatization strategies of the virtual orbital space in PbE-sTDDFT and show how CT excitations can be included in sTDDFT using NAKE functionals via a phenomenological approach. Finally, these electronic couplings are compared to couplings from a multistate fragment excitation difference (FED)-fragment charge difference (FCD) diabatization procedure. We show that both procedures, multistate FED-FCD and sTDDFT (with the right diabatization procedure chosen), lead to an overall good agreement for the electronic couplings, despite differences in their general diabatization strategy. We conclude that the entire range of photo-induced electronic couplings can be obtained using sTDDFT (with the right diabatization procedure chosen) in a black-box manner.
利用近似非加性动能(NAKE)泛函的子体系时变密度泛函理论(sTDDFT),已被证明能够在各种应用中描述激发能量转移过程。在这里,我们表明 sTDDFT,特别是与基于投影的嵌入(PbE)结合使用时,可以用于建模复杂化学和生物系统光物理性质所需的整个范围的光诱导电子耦合,因此代表了此类问题的完整工具包。这意味着它能够捕捉与局部和电荷转移(CT)激子相关的相互作用/耦合。然而,这需要选择一个合理的非绝热基。因此,我们提出了 PbE-sTDDFT 中虚拟轨道空间的不同非绝热化策略,并展示了如何通过唯象方法使用 NAKE 泛函将 CT 激发纳入 sTDDFT。最后,将这些电子耦合与来自多态片段激发差(FED)-片段电荷差(FCD)非绝热化过程的耦合进行比较。我们表明,尽管它们的一般非绝热化策略存在差异,但两种方法,多态 FED-FCD 和 sTDDFT(选择正确的非绝热化程序),对于电子耦合都能得到很好的整体一致性。我们得出结论,使用 sTDDFT(选择正确的非绝热化程序)可以以黑盒方式获得整个范围的光诱导电子耦合。