Amsterdam Center for Multiscale Modeling, Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
Biophysics of Photosynthesis, Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
J Phys Chem A. 2021 May 27;125(20):4313-4322. doi: 10.1021/acs.jpca.1c01467. Epub 2021 May 12.
Light-harvesting complex II (LHCII) is a pigment-protein complex present in higher plants and green algae. LHCII represents the main site of light absorption, and its role is to transfer the excitation energy toward the photosynthetic reaction centers, where primary energy conversion reactions take place. The optical properties of LHCII are known to depend on protein conformation. However, the relation between the structural and spectroscopic properties of the pigments is not fully understood yet. In this respect, previous classical molecular dynamics simulations of LHCII in a model membrane [ , , 1-10] have shown that the configuration and excitonic coupling of a chlorophyll (Chl) dimer functioning as the main terminal emitter of the complex are particularly sensitive to conformational changes. Here, we use quantum chemistry calculations to investigate in greater detail the effect of pigment-pigment interactions on the excited-state landscape. While most previous studies have used a local picture in which electrons are localized on single pigments, here we achieve a more accurate description of the Chl dimer by adopting a supramolecular picture where time-dependent density functional theory is applied to the whole system at once. Our results show that specific dimer configurations characterized by shorter inter-pigment distances can result in a sizable intensity decrease (up to 36%) of the Chl absorption bands in the visible spectral region. Such a decrease can be predicted only when accounting for Chl-Chl charge-transfer excitations, which is possible using the above-mentioned supramolecular approach. The charge-transfer character of the excitations is quantified by two types of analyses: one focusing on the composition of the excitations and the other directly on the observable total absorption intensities.
捕光复合物 II(LHCII)是存在于高等植物和绿藻中的一种色素-蛋白复合物。LHCII 代表主要的光吸收部位,其作用是将激发能转移到光合作用反应中心,在那里发生初级能量转换反应。已知 LHCII 的光学性质取决于蛋白质构象。然而,色素的结构和光谱性质之间的关系尚未完全理解。在这方面,先前在模型膜中对 LHCII 的经典分子动力学模拟[1-10]表明,作为复合物主要末端发射器的叶绿素(Chl)二聚体的构象和激子耦合对构象变化特别敏感。在这里,我们使用量子化学计算更详细地研究色素-色素相互作用对激发态景观的影响。虽然大多数先前的研究都使用了一个局部图像,其中电子定域在单个色素上,但在这里,我们通过采用超分子图像来更准确地描述 Chl 二聚体,其中时间相关的密度泛函理论一次应用于整个系统。我们的结果表明,具有较短色素间距离的特定二聚体构型可以导致 Chl 吸收带在可见光谱区域的强度显著降低(高达 36%)。只有在考虑 Chl-Chl 电荷转移激发时才能预测这种减少,而使用上述超分子方法是可能的。激发的电荷转移性质通过两种类型的分析进行量化:一种侧重于激发的组成,另一种直接针对可观察的总吸收强度。