Fleming Lewis, Gibson Des, Hutson David, Ahmadzadeh Sam, Waddell Ewan, Song Shigeng, Reid Stuart, Clark Caspar, Baker Julien S, Overend Russell, MacGregor Calum
Institute of Thin Films, Sensors and Imaging, School of Engineering and Computing, University of the West of Scotland, PA1 2BE Paisley, Scotland, UK.
The department of Biomedical Engineering, Graham Hills Building, The University of Strathclyde, 50 George Street, Glasgow, G1 1QE, UK.
Comput Methods Programs Biomed. 2021 Mar;200:105826. doi: 10.1016/j.cmpb.2020.105826. Epub 2020 Nov 4.
In this work we describe a breath emulator system, used to simulate temporal characteristics of exhaled carbon dioxide (CO) concentration waveform versus time simulating how much CO2 is present at each phase of the human lung respiratory process. The system provides a method for testing capnometers incorporating fast response non-dispersive infrared (NDIR) CO gas sensing devices - in a clinical setting, capnography devices assess ventilation which is the CO movement in and out of the lungs. A mathematical model describing the waveform of the expired CO characteristic and influence of CO gas sensor noise factors and speed of response is presented and compared with measured and emulated data.
A range of emulated capnogram temporal waveforms indicative of normal and restricted respiratory function demonstrated. The system can provide controlled introduction of water vapour and/ or other gases, simulating the influence of water vapour in exhaled breath and presence of other gases in a clinical setting such as anaesthetic agents (eg NO). This enables influence of water vapour and/ or other gases to be assessed and modelled in the performance of CO gas sensors incorporated into capnography systems. As such the breath emulator provides a means of controlled testing of capnometer CO gas sensors in a non-clinical setting, allowing device optimisation before use in a medical environment.
The breath emulator uses a unique combination of mass flow controllers, needle valves and a fast acting switchable pneumatic solenoid valve (FASV), used to controllably emulate exhaled CO temporal waveforms for normal and restricted respiratory function. Output data from the described emulator is compared with a mathematical model using a range of input parameters such as time constants associated with inhalation/ exhalation for different parts of the respiratory cycle and CO concentration levels. Sensor noise performance is modelled, taking into account input parameters such as sampling period, sensor temperature, sensing light throughput and pathlength.
The system described here produces realistic human capnographic waveforms and has the capability to emulate various waveforms associated with chronic respiratory diseases and early stage detection of exacerbations. The system has the capability of diagnosing medical conditions through analysis of CO waveforms. Demonstrated in this work the emulator has been used to test NDIR gas sensor technology deployed in capnometer devices prior to formal clinical trialling.
在本研究中,我们描述了一种呼气模拟器系统,用于模拟呼出二氧化碳(CO₂)浓度波形随时间的变化特征,以模拟人体肺部呼吸过程各阶段的二氧化碳含量。该系统提供了一种在临床环境中测试包含快速响应非色散红外(NDIR)CO₂气体传感装置的二氧化碳监测仪的方法——在临床环境中,二氧化碳监测设备评估通气情况,即CO₂在肺内的进出运动。本文提出了一个描述呼出CO₂特征波形以及CO₂气体传感器噪声因素和响应速度影响的数学模型,并将其与测量数据和模拟数据进行比较。
展示一系列模拟的二氧化碳波形图时间波形,这些波形表明正常和受限的呼吸功能。该系统能够可控地引入水蒸气和/或其他气体,模拟呼出气体中水蒸气的影响以及临床环境中其他气体(如麻醉剂,如一氧化氮)的存在。这使得能够评估水蒸气和/或其他气体对集成在二氧化碳监测系统中的CO₂气体传感器性能的影响并进行建模。因此,呼气模拟器提供了一种在非临床环境中对二氧化碳监测仪的CO₂气体传感器进行可控测试的方法,允许在医疗环境中使用之前对设备进行优化。
呼气模拟器采用质量流量控制器、针阀和快速作用的可切换气动电磁阀(FASV)的独特组合,用于可控地模拟正常和受限呼吸功能下呼出CO₂的时间波形。将所描述模拟器的输出数据与使用一系列输入参数(如与呼吸周期不同部分的吸气/呼气相关的时间常数以及CO₂浓度水平)的数学模型进行比较。对传感器噪声性能进行建模,同时考虑采样周期、传感器温度、传感光通量和光程等输入参数。
本文所述系统可产生逼真的人体二氧化碳监测波形,并能够模拟与慢性呼吸系统疾病相关的各种波形以及疾病加重的早期检测。该系统具有通过分析CO₂波形诊断医疗状况的能力。在本研究中展示了该模拟器已用于在正式临床试验之前测试部署在二氧化碳监测仪设备中的NDIR气体传感器技术。