Den Buijs Jorn Op, Warner Lizette, Chbat Nicolas W, Roy Tuhin K
Dept. of Physiol. & Biomed. Eng., Mayo Clinic, Rochester, MN 55905, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2871-4. doi: 10.1109/IEMBS.2006.260745.
Capnography, the monitoring of expired carbon dioxide (CO2) has been employed clinically as a non-invasive measure for the adequacy of ventilation of the alveoli of the lung. In combination with air flow measurements, the capnogram can be used to estimate the partial pressure of CO2 in the alveolar sacs. In addition, physiologically relevant parameters, such as the extent of CO2 rebreathing, the airway dead space, and the metabolic CO2 production can be predicted. To calculate these parameters, mathematical models have been previously formulated and applied to experimental data using off-line optimization procedures. Unfortunately, this does not permit online identification of the capnogram to detect changes in the physiological model parameters. In the present study, a Bayesian method for breath-by-breath identification of the volumetric capnogram is presented. The method integrates a model of CO2 exchange in the lungs, which is nonlinear due to the nature of human tidal breathing, with a particle filtering algorithm for estimation of the model parameters and changes therein. In addition, this allowed for a dynamic prediction of the unmeasured alveolar CO2 tension. The method is demonstrated using simulations of the capnogram. The proposed method could aid the clinician in the interpretation of the capnogram.
二氧化碳描记法,即对呼出二氧化碳(CO₂)的监测,已在临床上用作评估肺内肺泡通气充足性的一种非侵入性方法。结合气流测量,二氧化碳波形图可用于估计肺泡囊中CO₂的分压。此外,还可以预测一些生理相关参数,如CO₂重复吸入程度、气道死腔和代谢性CO₂产生量。为了计算这些参数,之前已经制定了数学模型,并使用离线优化程序将其应用于实验数据。不幸的是,这无法对二氧化碳波形图进行在线识别以检测生理模型参数的变化。在本研究中,提出了一种用于逐次呼吸识别容积式二氧化碳波形图的贝叶斯方法。该方法将由于人类潮式呼吸的性质而具有非线性的肺内CO₂交换模型与用于估计模型参数及其变化的粒子滤波算法相结合。此外,这还能对未测量的肺泡CO₂张力进行动态预测。通过对二氧化碳波形图的模拟来演示该方法。所提出的方法有助于临床医生解读二氧化碳波形图。