Suppr超能文献

病毒等电点估计:理论与方法。

Virus Isoelectric Point Estimation: Theories and Methods.

机构信息

Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA

出版信息

Appl Environ Microbiol. 2021 Jan 15;87(3). doi: 10.1128/AEM.02319-20.

Abstract

Much of virus fate, both in the environment and in physical/chemical treatment, is dependent on electrostatic interactions. Developing an accurate means of predicting virion isoelectric point (pI) would help to understand and anticipate virus fate and transport, especially for viruses that are not readily propagated in the lab. One simple approach to predicting pI estimates the pH at which the sum of charges from ionizable amino acids in capsid proteins approaches zero. However, predicted pIs based on capsid charges frequently deviate by several pH units from empirically measured pIs. Recently, the discrepancy between empirical and predicted pI was attributed to the electrostatic neutralization of predictable polynucleotide-binding regions (PBRs) of the capsid interior. In this paper, we review models presupposing (i) the influence of the viral polynucleotide on surface charge or (ii) the contribution of only exterior residues to surface charge. We then compare these models to the approach of excluding only PBRs and hypothesize a conceptual electrostatic model that aligns with this approach. The PBR exclusion method outperformed methods based on three-dimensional (3D) structure and accounted for major discrepancies in predicted pIs without adversely affecting pI prediction for a diverse range of viruses. In addition, the PBR exclusion method was determined to be the best available method for predicting virus pI, since (i) PBRs are predicted independently of the impact on pI, (ii) PBR prediction relies on proteome sequences rather than detailed structural models, and (iii) PBR exclusion was successfully demonstrated on a diverse set of viruses. These models apply to nonenveloped viruses only. A similar model for enveloped viruses is complicated by a lack of data on enveloped virus pI, as well as uncertainties regarding the influence of the phospholipid envelope on charge and ion gradients.

摘要

病毒的命运在很大程度上取决于环境和物理/化学处理中的静电相互作用。开发一种准确预测病毒粒子等电点(pI)的方法有助于理解和预测病毒的命运和迁移,特别是对于那些不易在实验室中繁殖的病毒。一种简单的预测 pI 的方法是估计壳蛋白中可离子化氨基酸的电荷总和接近零时的 pH 值。然而,基于壳蛋白电荷预测的 pI 值通常与实验测量的 pI 值相差几个 pH 单位。最近,经验和预测 pI 之间的差异归因于壳内可预测的多核苷酸结合区(PBR)的静电中和。在本文中,我们回顾了假设(i)病毒多核苷酸对表面电荷的影响或(ii)仅外部残基对表面电荷的贡献的模型。然后,我们将这些模型与仅排除 PBR 的方法进行了比较,并假设了一种与该方法一致的概念性静电模型。PBR 排除法优于基于三维(3D)结构的方法,并解释了预测 pI 值的主要差异,而不会对广泛的病毒的 pI 值预测产生不利影响。此外,PBR 排除方法被确定为预测病毒 pI 的最佳方法,因为(i)PBR 是独立于对 pI 的影响进行预测的,(ii)PBR 预测依赖于蛋白质组序列而不是详细的结构模型,以及(iii)PBR 排除在一组多样化的病毒上得到了成功验证。这些模型仅适用于无包膜病毒。包膜病毒的类似模型由于缺乏包膜病毒 pI 的数据以及关于磷脂包膜对电荷和离子梯度的影响的不确定性而变得复杂。

相似文献

1
Virus Isoelectric Point Estimation: Theories and Methods.
Appl Environ Microbiol. 2021 Jan 15;87(3). doi: 10.1128/AEM.02319-20.
2
Improved Virus Isoelectric Point Estimation by Exclusion of Known and Predicted Genome-Binding Regions.
Appl Environ Microbiol. 2020 Nov 10;86(23). doi: 10.1128/AEM.01674-20.
3
Isoelectric points of viruses.
J Appl Microbiol. 2010 Aug;109(2):388-397. doi: 10.1111/j.1365-2672.2010.04663.x. Epub 2010 Jan 22.
4
Controlling the surface charge of simple viruses.
PLoS One. 2021 Sep 10;16(9):e0255820. doi: 10.1371/journal.pone.0255820. eCollection 2021.
5
Electrostatics and the assembly of an RNA virus.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061928. doi: 10.1103/PhysRevE.71.061928. Epub 2005 Jun 30.
7
Impact of the isoelectric point of model parvoviruses on viral retention in anion-exchange chromatography.
Biotechnol Bioeng. 2021 Jan;118(1):116-129. doi: 10.1002/bit.27555. Epub 2020 Sep 12.
8
Virus Isoelectric Point Determination Using Single-Particle Chemical Force Microscopy.
Langmuir. 2020 Jan 14;36(1):370-378. doi: 10.1021/acs.langmuir.9b03070. Epub 2019 Dec 31.
9
Contributions of Charged Residues in Structurally Dynamic Capsid Surface Loops to Rous Sarcoma Virus Assembly.
J Virol. 2016 May 27;90(12):5700-5714. doi: 10.1128/JVI.00378-16. Print 2016 Jun 15.
10
Electrostatic Theory of the Acidity of the Solution in the Lumina of Viruses and Virus-Like Particles.
J Phys Chem B. 2023 Mar 16;127(10):2160-2168. doi: 10.1021/acs.jpcb.2c08604. Epub 2023 Mar 7.

引用本文的文献

1
Influence of Ionic Surfactants on Microfiltration of Enveloped and Nonenveloped Viruses.
Water Environ Res. 2025 Sep;97(9):e70171. doi: 10.1002/wer.70171.
3
Navigating the Purification Process: Maintaining the Integrity of Replication-Competent Enveloped Viruses.
Vaccines (Basel). 2025 Apr 23;13(5):444. doi: 10.3390/vaccines13050444.
4
Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent.
Food Environ Virol. 2025 Jan 15;17(1):19. doi: 10.1007/s12560-025-09634-6.
5
Antibacterial Coatings of Poly(ethylenimine)/Poly(l-lactide)-Grafted Hyaluronic Acid Multilayers Surface-Functionalized with Bacteriophages.
ACS Omega. 2024 Dec 3;9(50):49432-49440. doi: 10.1021/acsomega.4c06933. eCollection 2024 Dec 17.
9
Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review.
Int J Environ Res Public Health. 2023 Apr 11;20(8):5471. doi: 10.3390/ijerph20085471.
10
Quaternized Chitosan Derivatives as Viable Antiviral Agents: Structure-Activity Correlations and Mechanisms of Action.
ACS Appl Mater Interfaces. 2023 Apr 19;15(15):18707-18719. doi: 10.1021/acsami.3c01421. Epub 2023 Apr 4.

本文引用的文献

1
Improved Virus Isoelectric Point Estimation by Exclusion of Known and Predicted Genome-Binding Regions.
Appl Environ Microbiol. 2020 Nov 10;86(23). doi: 10.1128/AEM.01674-20.
4
Asymmetry in icosahedral viruses.
Curr Opin Virol. 2019 Jun;36:67-73. doi: 10.1016/j.coviro.2019.05.006. Epub 2019 Jun 28.
5
Coronavirus envelope protein: current knowledge.
Virol J. 2019 May 27;16(1):69. doi: 10.1186/s12985-019-1182-0.
6
DNA Compaction and Charge Neutralization Regulated by Divalent Ions in very Low pH Solution.
Polymers (Basel). 2019 Feb 15;11(2):337. doi: 10.3390/polym11020337.
7
UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.
8
VIPERdb: A Tool for Virus Research.
Annu Rev Virol. 2018 Sep 29;5(1):477-488. doi: 10.1146/annurev-virology-092917-043405.
9
Structures of Qβ virions, virus-like particles, and the Qβ-MurA complex reveal internal coat proteins and the mechanism of host lysis.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11697-11702. doi: 10.1073/pnas.1707102114. Epub 2017 Oct 16.
10
Viral Aggregation: Impact on Virus Behavior in the Environment.
Environ Sci Technol. 2017 Jul 5;51(13):7318-7325. doi: 10.1021/acs.est.6b05835. Epub 2017 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验