Rabinowitz Jake, Whittier Elizabeth, Liu Zheng, Jayant Krishna, Frank Joachim, Shepard Kenneth
Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Sci Adv. 2020 Nov 13;6(46). doi: 10.1126/sciadv.abd0126. Print 2020 Nov.
Nanofluidic platforms offering tunable material transport are applicable in biosensing, chemical detection, and filtration. Prior studies have achieved selective and controllable ion transport through electrical, optical, or chemical gating of complex nanostructures. Here, we mechanically control nanofluidic transport using nanobubbles. When plugging nanochannels, nanobubbles rectify and occasionally enhance ionic currents in a geometry-dependent manner. These conductance effects arise from nanobubbles inducing surface-governed ion transport through interfacial electrolyte films residing between nanobubble surfaces and nanopipette walls. The nanobubbles investigated here are mechanically generated, made metastable by surface pinning, and verified with cryogenic transmission electron microscopy. Our findings are relevant to nanofluidic device engineering, three-phase interface properties, and nanopipette-based applications.
提供可调谐物质传输的纳米流体平台可应用于生物传感、化学检测和过滤。先前的研究已通过复杂纳米结构的电、光或化学门控实现了选择性和可控的离子传输。在此,我们使用纳米气泡对纳米流体传输进行机械控制。当堵塞纳米通道时,纳米气泡以几何形状依赖的方式整流并偶尔增强离子电流。这些电导效应源于纳米气泡通过位于纳米气泡表面和纳米吸管壁之间的界面电解质膜诱导表面控制的离子传输。这里研究的纳米气泡是通过机械方式产生的,通过表面钉扎使其处于亚稳态,并通过低温透射电子显微镜进行了验证。我们的发现与纳米流体器件工程、三相界面特性以及基于纳米吸管的应用相关。