Suppr超能文献

肿瘤周围放射组学能否提高直径小于 2cm 的实性肺结节良恶性预测?

Can Peritumoral Radiomics Improve the Prediction of Malignancy of Solid Pulmonary Nodule Smaller Than 2 cm?

机构信息

Department of Radiology, Shanxi Bethune Hospital, 99 Longcheng Street, Taiyuan, Shanxi 030032, China.

GE Healthcare China, Beijing, China.

出版信息

Acad Radiol. 2022 Feb;29 Suppl 2:S47-S52. doi: 10.1016/j.acra.2020.10.029. Epub 2020 Nov 11.

Abstract

RATIONALE AND OBJECTIVES

To compare the ability of radiomics models including the perinodular parenchyma and standard nodular radiomics model in lung cancer diagnosis of solid pulmonary nodules smaller than 2 cm.

MATERIALS AND METHODS

In this retrospective study, the computed tomography (CT) scans of 206 patients with a lung nodule from a single institution in 2012-2019 were collected. For each nodule, four volumes of interest were defined using the gross tumor volume (GTV) and peritumoral volumes (PTVs) of 5, 10, and 15 mm around the tumor.

RESULTS

Radiomics models created from GTV, GTV plus 5 mm of PTV, GTV plus 10 mm of PTV, and GTV plus 15 mm of PTV achieved AUCs of 0.89, 0.81, 0.81, and 0.73, respectively, in the validation cohort for the diagnostic classification of benign and malignant pulmonary nodules. The performance of the models gradually decreased as the PTV increased. Wavelet features were the primary features identified in optimal radiomics signatures (2/3 in R, 4/5 in GTV plus 5 mm PTV, 3/4 in GTV plus 10 mm PTV, 2/3 in GTV plus 15 mm PTV).

CONCLUSION

Our study indicated that the radiomics signatures of GTV had a good prediction ability in distinguishing benign and malignant solid pulmonary nodules smaller than 2 cm on CT. However, the radiomics feature of the surrounding parenchyma of the nodule did not enhance the effectiveness of the diagnostic model.

摘要

背景与目的

比较包括结节周围实质在内的放射组学模型和标准结节放射组学模型在诊断 2cm 以下肺部小结节中肺癌的能力。

材料与方法

本回顾性研究收集了 2012 年至 2019 年期间一家机构的 206 例肺部结节患者的 CT 扫描。对于每个结节,使用肿瘤的大体肿瘤体积(GTV)和周围 5、10 和 15mm 的肿瘤周围体积(PTV)定义四个感兴趣区域。

结果

在验证队列中,用于诊断良性和恶性肺结节的分类,从 GTV、GTV 加 5mm 的 PTV、GTV 加 10mm 的 PTV 和 GTV 加 15mm 的 PTV 创建的放射组学模型的 AUC 分别为 0.89、0.81、0.81 和 0.73。随着 PTV 的增加,模型的性能逐渐下降。在最优放射组学特征中,小波特征是主要特征(R 中 2/3,GTV 加 5mm PTV 中 4/5,GTV 加 10mm PTV 中 3/4,GTV 加 15mm PTV 中 2/3)。

结论

本研究表明,GTV 的放射组学特征在 CT 上对 2cm 以下的良性和恶性肺部实性小结节具有良好的预测能力。然而,结节周围实质的放射组学特征并没有增强诊断模型的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验