Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China.
Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China.
Int J Radiat Oncol Biol Phys. 2021 Jul 15;110(4):1161-1170. doi: 10.1016/j.ijrobp.2021.01.049. Epub 2021 Feb 3.
This study aimed to establish machine learning models using dosimetric factors and radiomics features within 5 regions of interest (ROIs) in treatment planning computed tomography images to improve the prediction of symptomatic radiation pneumonitis (RP) (grade ≥2).
This study retrospectively collected data on 79 patients with lung cancer (25 RP ≥2) who underwent chemoradiotherapy between 2015 and 2018. We defined 5 ROIs in planning computed tomography images: gross tumor volume (GTV), planning tumor volume (PTV), PTV-GTV, total lung (TL)-GTV, and TL-PTV. We calculated the mean dose, V5, V10, V20, and V30 within TL-GTV and TL-PTV and the mean dose within the other ROIs. A total of 1924 radiomics features were extracted from all 5 ROIs. We selected the best predictors for classifying 2 groups of patients using a sequential backward elimination support vector machine model. A permutation test was used to assess its statistical significance (P < .05).
The best predictors for symptomatic RP were the combination of 11 radiomics features, 5 dosimetric factors, age, and T stage, achieving an area under the curve (AUC) of 0.94 (95% confidence interval [CI], 0.85-1) (accuracy, 90%; sensitivity, 80% [95% CI, 44%-96%]; specificity, 95% [95% CI, 73%-100%]; P = 8 × 10). The clinical characteristics, dosimetric factors, and their combination showed limited predictive power (accuracy, 63.3%, 70%, and 70%; AUC [95% CI]: 0.73 [0.54-0.92], 0.53 [0.31-0.75], and 0.72 [0.51-0.92], respectively). The radiomics features of PTV-GTV and TL-PTV outperformed those of the other ROIs (accuracy, 76.7% and 76.7%; AUC [95% CI]: 0.82 [0.65-0.99] and 0.80 [0.59-1], respectively).
Combining dosimetric factors and radiomics features within different ROIs can improve the prediction of symptomatic RP. Our results can help physicians adjust the radiation dose distribution of the dose-sensitive lungs and target volumes based on personalized RP estimates.
本研究旨在通过治疗计划计算机断层扫描图像中 5 个感兴趣区域(ROI)内的剂量学因素和放射组学特征建立机器学习模型,以提高预测有症状放射性肺炎(RP)(≥2 级)的能力。
本研究回顾性收集了 2015 年至 2018 年间接受放化疗的 79 例肺癌患者(25 例 RP≥2)的数据。我们在计划计算机断层扫描图像中定义了 5 个 ROI:大体肿瘤体积(GTV)、计划肿瘤体积(PTV)、PTV-GTV、全肺(TL)-GTV 和 TL-PTV。我们计算了 TL-GTV 和 TL-PTV 内的平均剂量、V5、V10、V20 和 V30,以及其他 ROI 内的平均剂量。从所有 5 个 ROI 中提取了 1924 个放射组学特征。我们使用顺序后向消除支持向量机模型选择了用于分类 2 组患者的最佳预测因子。通过置换检验评估其统计学意义(P<0.05)。
用于预测有症状 RP 的最佳预测因子是 11 个放射组学特征、5 个剂量学因素、年龄和 T 分期的组合,其曲线下面积(AUC)为 0.94(95%置信区间[CI],0.85-1)(准确率为 90%;敏感度为 80%[95%CI,44%-96%];特异性为 95%[95%CI,73%-100%];P=8×10)。临床特征、剂量学因素及其组合的预测能力有限(准确率分别为 63.3%、70%和 70%;AUC[95%CI]:0.73[0.54-0.92]、0.53[0.31-0.75]和 0.72[0.51-0.92])。PTV-GTV 和 TL-PTV 的放射组学特征优于其他 ROI(准确率分别为 76.7%和 76.7%;AUC[95%CI]:0.82[0.65-0.99]和 0.80[0.59-1])。
结合不同 ROI 内的剂量学因素和放射组学特征可以提高有症状 RP 的预测能力。我们的研究结果可以帮助医生根据个性化的 RP 估计值调整对剂量敏感的肺和靶区的放射剂量分布。