Suppr超能文献

计划 CT 图像中不同感兴趣区的剂量学因素和放射组学特征可改善放射性肺炎预测。

Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis.

机构信息

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China.

Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China.

出版信息

Int J Radiat Oncol Biol Phys. 2021 Jul 15;110(4):1161-1170. doi: 10.1016/j.ijrobp.2021.01.049. Epub 2021 Feb 3.

Abstract

PURPOSE

This study aimed to establish machine learning models using dosimetric factors and radiomics features within 5 regions of interest (ROIs) in treatment planning computed tomography images to improve the prediction of symptomatic radiation pneumonitis (RP) (grade ≥2).

METHODS AND MATERIALS

This study retrospectively collected data on 79 patients with lung cancer (25 RP ≥2) who underwent chemoradiotherapy between 2015 and 2018. We defined 5 ROIs in planning computed tomography images: gross tumor volume (GTV), planning tumor volume (PTV), PTV-GTV, total lung (TL)-GTV, and TL-PTV. We calculated the mean dose, V5, V10, V20, and V30 within TL-GTV and TL-PTV and the mean dose within the other ROIs. A total of 1924 radiomics features were extracted from all 5 ROIs. We selected the best predictors for classifying 2 groups of patients using a sequential backward elimination support vector machine model. A permutation test was used to assess its statistical significance (P < .05).

RESULTS

The best predictors for symptomatic RP were the combination of 11 radiomics features, 5 dosimetric factors, age, and T stage, achieving an area under the curve (AUC) of 0.94 (95% confidence interval [CI], 0.85-1) (accuracy, 90%; sensitivity, 80% [95% CI, 44%-96%]; specificity, 95% [95% CI, 73%-100%]; P = 8 × 10). The clinical characteristics, dosimetric factors, and their combination showed limited predictive power (accuracy, 63.3%, 70%, and 70%; AUC [95% CI]: 0.73 [0.54-0.92], 0.53 [0.31-0.75], and 0.72 [0.51-0.92], respectively). The radiomics features of PTV-GTV and TL-PTV outperformed those of the other ROIs (accuracy, 76.7% and 76.7%; AUC [95% CI]: 0.82 [0.65-0.99] and 0.80 [0.59-1], respectively).

CONCLUSIONS

Combining dosimetric factors and radiomics features within different ROIs can improve the prediction of symptomatic RP. Our results can help physicians adjust the radiation dose distribution of the dose-sensitive lungs and target volumes based on personalized RP estimates.

摘要

目的

本研究旨在通过治疗计划计算机断层扫描图像中 5 个感兴趣区域(ROI)内的剂量学因素和放射组学特征建立机器学习模型,以提高预测有症状放射性肺炎(RP)(≥2 级)的能力。

方法和材料

本研究回顾性收集了 2015 年至 2018 年间接受放化疗的 79 例肺癌患者(25 例 RP≥2)的数据。我们在计划计算机断层扫描图像中定义了 5 个 ROI:大体肿瘤体积(GTV)、计划肿瘤体积(PTV)、PTV-GTV、全肺(TL)-GTV 和 TL-PTV。我们计算了 TL-GTV 和 TL-PTV 内的平均剂量、V5、V10、V20 和 V30,以及其他 ROI 内的平均剂量。从所有 5 个 ROI 中提取了 1924 个放射组学特征。我们使用顺序后向消除支持向量机模型选择了用于分类 2 组患者的最佳预测因子。通过置换检验评估其统计学意义(P<0.05)。

结果

用于预测有症状 RP 的最佳预测因子是 11 个放射组学特征、5 个剂量学因素、年龄和 T 分期的组合,其曲线下面积(AUC)为 0.94(95%置信区间[CI],0.85-1)(准确率为 90%;敏感度为 80%[95%CI,44%-96%];特异性为 95%[95%CI,73%-100%];P=8×10)。临床特征、剂量学因素及其组合的预测能力有限(准确率分别为 63.3%、70%和 70%;AUC[95%CI]:0.73[0.54-0.92]、0.53[0.31-0.75]和 0.72[0.51-0.92])。PTV-GTV 和 TL-PTV 的放射组学特征优于其他 ROI(准确率分别为 76.7%和 76.7%;AUC[95%CI]:0.82[0.65-0.99]和 0.80[0.59-1])。

结论

结合不同 ROI 内的剂量学因素和放射组学特征可以提高有症状 RP 的预测能力。我们的研究结果可以帮助医生根据个性化的 RP 估计值调整对剂量敏感的肺和靶区的放射剂量分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验