George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, USA.
Eur J Neurosci. 2021 Oct;54(8):6948-6959. doi: 10.1111/ejn.15045. Epub 2020 Nov 27.
Catecholamine neurons of the locus coeruleus (LC) in the dorsal pontine tegmentum innervate the entire neuroaxis, with signaling actions implicated in the regulation of attention, arousal, sleep-wake cycle, learning, memory, anxiety, pain, mood, and brain metabolism. The co-release of norepinephrine (NE) and dopamine (DA) from LC terminals in the hippocampus plays a role in all stages of hippocampal-memory processing. This catecholaminergic regulation modulates the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. LC neurons in awake animals have two distinct firing modes: tonic firing (explorative) and phasic firing (exploitative). These two firing modes exert different modulatory effects on post-synaptic dendritic spines. In the hippocampus, the firing modes regulate long-term potentiation (LTP) and long-term depression, which differentially regulate the mRNA expression and transcription of plasticity-related proteins (PRPs). These proteins aid in structural alterations of dendritic spines, that is, structural long-term potentiation (sLTP), via expansion and structural long-term depression (sLTD) via contraction of post-synaptic dendritic spines. Given the LC's role in all phases of memory processing, the degeneration of 50% of the LC neuron population occurring in Alzheimer's disease (AD) is a clinically relevant aspect of disease pathology. The loss of catecholaminergic regulation contributes to dysfunction in memory processes along with impaired functions associated with attention and task completion. The multifaceted role of the LC in memory and general task performance and the close correlation of LC degeneration with neurodegenerative disease progression together implicate it as a target for new clinical assessment tools.
蓝斑核(LC)中的儿茶酚胺神经元支配整个神经轴,其信号作用与注意力、觉醒、睡眠-觉醒周期、学习、记忆、焦虑、疼痛、情绪和大脑代谢的调节有关。LC 末梢在海马中的去甲肾上腺素(NE)和多巴胺(DA)的共释放参与了海马记忆处理的所有阶段。这种儿茶酚胺调节调制了基于海马体的记忆的编码、巩固、检索和反转。清醒动物中的 LC 神经元有两种不同的放电模式:紧张性放电(探索性)和相位性放电(开发性)。这两种放电模式对突触后树突棘产生不同的调制作用。在海马体中,放电模式调节长时程增强(LTP)和长时程抑制(LTD),它们差异调节与可塑性相关的蛋白质(PRPs)的 mRNA 表达和转录。这些蛋白质有助于树突棘的结构改变,即通过扩张产生结构长时程增强(sLTP),通过收缩产生结构长时程抑制(sLTD)。鉴于 LC 在记忆处理的所有阶段都发挥作用,阿尔茨海默病(AD)中发生的 50%的 LC 神经元群体退化是疾病病理学中一个具有临床相关性的方面。儿茶酚胺调节的丧失导致记忆过程的功能障碍,以及注意力和任务完成相关功能的受损。LC 在记忆和一般任务表现中的多方面作用,以及 LC 退化与神经退行性疾病进展的密切相关性,共同表明它是新的临床评估工具的目标。