Suppr超能文献

数字病理学分析量化三阴性乳腺癌中CD3、CD4、CD8、CD20和FoxP3免疫标志物的空间异质性。

Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer.

作者信息

Mi Haoyang, Gong Chang, Sulam Jeremias, Fertig Elana J, Szalay Alexander S, Jaffee Elizabeth M, Stearns Vered, Emens Leisha A, Cimino-Mathews Ashley M, Popel Aleksander S

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Johns Hopkins Mathematical Institute for Data Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.

出版信息

Front Physiol. 2020 Oct 19;11:583333. doi: 10.3389/fphys.2020.583333. eCollection 2020.

Abstract

Overwhelming evidence has shown the significant role of the tumor microenvironment (TME) in governing the triple-negative breast cancer (TNBC) progression. Digital pathology can provide key information about the spatial heterogeneity within the TME using image analysis and spatial statistics. These analyses have been applied to CD8+ T cells, but quantitative analyses of other important markers and their correlations are limited. In this study, a digital pathology computational workflow is formulated for characterizing the spatial distributions of five immune markers (CD3, CD4, CD8, CD20, and FoxP3) and then the functionality is tested on whole slide images from patients with TNBC. The workflow is initiated by digital image processing to extract and colocalize immune marker-labeled cells and then convert this information to point patterns. Afterward invasive front (IF), central tumor (CT), and normal tissue (N) are characterized. For each region, we examine the intra-tumoral heterogeneity. The workflow is then repeated for all specimens to capture inter-tumoral heterogeneity. In this study, both intra- and inter-tumoral heterogeneities are observed for all five markers across all specimens. Among all regions, IF tends to have higher densities of immune cells and overall larger variations in spatial model fitting parameters and higher density in cell clusters and hotspots compared to CT and N. Results suggest a distinct role of IF in the tumor immuno-architecture. Though the sample size is limited in the study, the computational workflow could be readily reproduced and scaled due to its automatic nature. Importantly, the value of the workflow also lies in its potential to be linked to treatment outcomes and identification of predictive biomarkers for responders/non-responders, and its application to parameterization and validation of computational immuno-oncology models.

摘要

大量证据表明肿瘤微环境(TME)在三阴性乳腺癌(TNBC)进展过程中起着重要作用。数字病理学可通过图像分析和空间统计提供有关TME内空间异质性的关键信息。这些分析已应用于CD8 + T细胞,但对其他重要标志物及其相关性的定量分析有限。在本研究中,制定了一种数字病理学计算工作流程,用于表征五种免疫标志物(CD3、CD4、CD8、CD20和FoxP3)的空间分布,然后在TNBC患者的全切片图像上测试其功能。该工作流程首先通过数字图像处理来提取免疫标志物标记的细胞并进行共定位,然后将此信息转换为点模式。之后对浸润前沿(IF)、肿瘤中心(CT)和正常组织(N)进行表征。对于每个区域,我们检查肿瘤内异质性。然后对所有标本重复该工作流程以捕获肿瘤间异质性。在本研究中,在所有标本的所有五种标志物中均观察到肿瘤内和肿瘤间异质性。在所有区域中,与CT和N相比,IF往往具有更高的免疫细胞密度、空间模型拟合参数的总体变化更大,以及细胞簇和热点中的密度更高。结果表明IF在肿瘤免疫结构中具有独特作用。尽管本研究中的样本量有限,但由于其自动化性质,该计算工作流程可以很容易地重现和扩展。重要的是,该工作流程的价值还在于其有可能与治疗结果相关联,并识别反应者/无反应者的预测生物标志物,以及其在计算免疫肿瘤学模型的参数化和验证中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d5/7604437/ddbf6f9c8348/fphys-11-583333-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验