Suppr超能文献

遗传变异作为异基因造血干细胞移植后慢性移植物抗宿主病的预测性生物标志物的研究进展。

Review of Genetic Variation as a Predictive Biomarker for Chronic Graft-Versus-Host-Disease After Allogeneic Stem Cell Transplantation.

机构信息

Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland.

Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany.

出版信息

Front Immunol. 2020 Oct 19;11:575492. doi: 10.3389/fimmu.2020.575492. eCollection 2020.

Abstract

Chronic graft-versus-host disease (cGvHD) is one of the major complications of allogeneic stem cell transplantation (HSCT). cGvHD is an autoimmune-like disorder affecting multiple organs and involves a dermatological rash, tissue inflammation and fibrosis. The incidence of cGvHD has been reported to be as high as 30% to 60% and there are currently no reliable tools for predicting the occurrence of cGvHD. There is therefore an important unmet clinical need for predictive biomarkers. The present review summarizes the state of the art for genetic variation as a predictive biomarker for cGvHD. We discuss three different modes of action for genetic variation in transplantation: genetic associations, genetic matching, and pharmacogenetics. The results indicate that currently, there are no genetic polymorphisms or genetic tools that can be reliably used as validated biomarkers for predicting cGvHD. A number of recommendations for future studies can be drawn. The majority of studies to date have been under-powered and included too few patients and genetic markers. Like in all complex multifactorial diseases, large collaborative genome-level studies are now needed to achieve reliable and unbiased results. Some of the candidate genes, in particular, , , , , , and , and some non-HLA variants in the HLA gene region have been replicated to be associated with cGvHD risk in independent studies. These associations should now be confirmed in large well-characterized cohorts with fine mapping. Some patients develop cGvHD despite very extensive immunosuppression and other treatments, indicating that the current therapeutic regimens may not always be effective enough. Hence, more studies on pharmacogenetics are also required. Moreover, all of these studies should be adjusted for diagnostic and clinical features of cGvHD. We conclude that future studies should focus on modern genome-level tools, such as machine learning, polygenic risk scores and genome-wide association study-transcription meta-analyses, instead of focusing on just single variants. The risk of cGvHD may be related to the summary level of immunogenetic differences, or whole genome histocompatibility between each donor-recipient pair. As the number of genome-wide analyses in HSCT is increasing, we are approaching an era where there will be sufficient data to incorporate these approaches in the near future.

摘要

慢性移植物抗宿主病(cGvHD)是异基因造血干细胞移植(HSCT)的主要并发症之一。cGvHD 是一种影响多个器官的自身免疫样疾病,涉及皮肤疹、组织炎症和纤维化。据报道,cGvHD 的发生率高达 30%至 60%,目前尚无可靠的工具来预测 cGvHD 的发生。因此,预测生物标志物存在重要的未满足的临床需求。本综述总结了遗传变异作为 cGvHD 预测生物标志物的最新进展。我们讨论了遗传变异在移植中的三种不同作用模式:遗传关联、遗传匹配和药物遗传学。结果表明,目前,没有遗传多态性或遗传工具可以可靠地用作预测 cGvHD 的验证生物标志物。可以得出一些关于未来研究的建议。迄今为止,大多数研究的效力都不足,纳入的患者和遗传标志物太少。与所有复杂的多因素疾病一样,现在需要进行大型合作基因组水平研究,以获得可靠和无偏倚的结果。一些候选基因,特别是、、、、、和,以及 HLA 基因区域中的一些非 HLA 变体,在独立研究中已被复制与 cGvHD 风险相关。这些关联现在应该在具有精细映射的大型特征良好的队列中得到确认。尽管一些患者接受了非常广泛的免疫抑制和其他治疗,但仍发生了 cGvHD,这表明当前的治疗方案并不总是足够有效。因此,还需要更多关于药物遗传学的研究。此外,所有这些研究都应针对 cGvHD 的诊断和临床特征进行调整。我们得出结论,未来的研究应侧重于现代基因组水平的工具,如机器学习、多基因风险评分和全基因组关联研究-转录元分析,而不是仅仅关注单个变体。cGvHD 的风险可能与免疫遗传差异的综合水平或每个供体-受体对之间的全基因组相容性有关。随着 HSCT 中全基因组分析数量的增加,我们即将进入一个在不久的将来可以将这些方法纳入其中的时代。

相似文献

引用本文的文献

10
Potential Novel Biomarkers in Chronic Graft-Versus-Host Disease.慢性移植物抗宿主病中的潜在新型生物标志物
Front Immunol. 2020 Dec 23;11:602547. doi: 10.3389/fimmu.2020.602547. eCollection 2020.

本文引用的文献

4
Who is the best donor for haploidentical stem cell transplantation?谁是单倍体造血干细胞移植的最佳供者?
Semin Hematol. 2019 Jul;56(3):194-200. doi: 10.1053/j.seminhematol.2018.08.003. Epub 2018 Aug 24.
6
A review of kernel methods for genetic association studies.遗传关联研究的核方法综述。
Genet Epidemiol. 2019 Mar;43(2):122-136. doi: 10.1002/gepi.22180. Epub 2019 Jan 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验