Suppr超能文献

基于潜在参与自噬的基因对乳腺癌预后特征的鉴定与验证

Identification and validation of prognostic signature for breast cancer based on genes potentially involved in autophagy.

作者信息

Zhong Shanliang, Chen Huanwen, Yang Sujin, Feng Jifeng, Zhou Siying

机构信息

Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.

Xinglin laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China.

出版信息

PeerJ. 2020 Jul 27;8:e9621. doi: 10.7717/peerj.9621. eCollection 2020.

Abstract

We aimed to identify prognostic signature based on autophagy-related genes (ARGs) for breast cancer patients. The datasets of breast cancer were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Least absolute shrinkage and selection operator (LASSO) Cox regression was conducted to construct multiple-ARG risk signature. In total, 32 ARGs were identified as differentially expressed between tumors and adjacent normal tissues based on TCGA. Six ARGs (IFNG, TP63, PPP1R15A, PTK6, EIF4EBP1 and NKX2-3) with non-zero coefficient were selected from the 32 ARGs using LASSO regression. The 6-ARG signature divided patients into high-and low-risk group. Survival analysis indicated that low-risk group had longer survival time than high-risk group. We further validated the 6-ARG signature using dataset from GEO and found similar results. We analyzed the associations between ARGs and breast cancer survival in TCGA and nine GEO datasets, and obtained 170 ARGs with significant associations. EIF4EBP1, FOS and FAS were the top three ARGs with highest numbers of significant associations. EIF4EBP1 may be a key ARG which had a higher expression level in patients with more malignant molecular subtypes and higher grade breast cancer. In conclusion, our 6-ARG signature was of significance in predicting of overall survival of patients with breast cancer. EIF4EBP1 may be a key ARG associated with breast cancer survival.

摘要

我们旨在基于自噬相关基因(ARGs)为乳腺癌患者识别预后特征。乳腺癌数据集从癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)下载。采用最小绝对收缩和选择算子(LASSO)Cox回归构建多ARGs风险特征。基于TCGA,共鉴定出32个ARGs在肿瘤组织和癌旁正常组织之间存在差异表达。使用LASSO回归从32个ARGs中筛选出6个系数不为零的ARGs(IFNG、TP63、PPP1R15A、PTK6、EIF4EBP1和NKX2-3)。这6个ARGs特征将患者分为高风险组和低风险组。生存分析表明,低风险组的生存时间长于高风险组。我们进一步使用GEO数据集验证了这6个ARGs特征,得到了相似的结果。我们分析了TCGA和9个GEO数据集中ARGs与乳腺癌生存的关联,获得了170个具有显著关联的ARGs。EIF4EBP1、FOS和FAS是具有显著关联数量最多的前三个ARGs。EIF4EBP1可能是一个关键的ARGs,在分子亚型更恶性和乳腺癌分级更高的患者中表达水平更高。总之,我们的6个ARGs特征在预测乳腺癌患者的总生存方面具有重要意义。EIF4EBP1可能是与乳腺癌生存相关的关键ARGs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95ca/7391974/3d8c268bd1f1/peerj-08-9621-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验