Suppr超能文献

使用基于逻辑回归的分类方法及R Shiny实现对法医数据进行评估

Evaluation of Forensic Data Using Logistic Regression-Based Classification Methods and an R Shiny Implementation.

作者信息

Biosa Giulia, Giurghita Diana, Alladio Eugenio, Vincenti Marco, Neocleous Tereza

机构信息

Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Catholic University of the Sacred Heart, F. Policlinico Gemelli IRCCS, Rome, Italy.

School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom.

出版信息

Front Chem. 2020 Oct 21;8:738. doi: 10.3389/fchem.2020.00738. eCollection 2020.

Abstract

We demonstrate the use of classification methods that are well-suited for forensic toxicology applications. The methods are based on penalized logistic regression, can be employed when separation occurs in a two-class classification setting, and allow for the calculation of likelihood ratios. A case study of this framework is demonstrated on alcohol biomarker data for classifying chronic alcohol drinkers. The approach can be extended to applications in the fields of analytical and forensic chemistry, where it is a common feature to have a large number of biomarkers, and allows for flexibility in model assumptions such as multivariate normality. While some penalized regression methods have been introduced previously in forensic applications, our study is meant to encourage practitioners to use these powerful methods more widely. As such, based upon our proof-of-concept studies, we also introduce an R Shiny online tool with an intuitive interface able to perform several classification methods. We anticipate that this open-source and free-of-charge application will provide a powerful and dynamic tool to infer the LR value in case of classification tasks.

摘要

我们展示了适用于法医毒理学应用的分类方法的使用。这些方法基于惩罚逻辑回归,可在两类分类设置中出现分离时使用,并允许计算似然比。在用于对慢性饮酒者进行分类的酒精生物标志物数据上展示了该框架的一个案例研究。该方法可扩展到分析化学和法医化学领域的应用,在这些领域中,拥有大量生物标志物是一个常见特征,并且允许在诸如多元正态性等模型假设方面具有灵活性。虽然之前在法医应用中已经引入了一些惩罚回归方法,但我们的研究旨在鼓励从业者更广泛地使用这些强大的方法。因此,基于我们的概念验证研究,我们还推出了一个具有直观界面的R Shiny在线工具,能够执行多种分类方法。我们预计这个开源且免费的应用程序将为在分类任务中推断LR值提供一个强大而动态的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d092/7609892/39298855bb88/fchem-08-00738-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验