Bodkhe Gajanan A, Hedau Bhavna S, Deshmukh Megha A, Patil Harshada K, Shirsat Sumedh M, Phase Devdatta M, Pandey Krishan K, Shirsat Mahendra D
RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.
Department of Electronics and Telecommunication Engineering, Jawaharlal Nehru Engineering College, Aurangabad, India.
Front Chem. 2020 Oct 15;8:803. doi: 10.3389/fchem.2020.00803. eCollection 2020.
In the present investigation, copper benzene tricarboxylate metal organic frameworks (CuBTC MOF) and Au nanoparticle incorporated CuBTC MOF (Au@CuBTC) were synthesized by the conventional solvothermal method in a round bottom flask at 105°C and kept in an oil bath. The synthesized CuBTC MOF and Au@CuBTC MOFs were characterized by structure using X-ray diffraction (XRD) spectroscopic methods including Fourier Transform Infrared spectroscopy, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and Energy dispersive spectroscopy (EDS). We also characterized them using morphological techniques such as Field emission scanning electron microscopy (FE-SEM), and electrochemical approaches that included cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). We examined thermal stability by thermogravimetric analysis (TG/DTA) and N adsorption-desorption isotherm by Brunauer-Emmett-Teller (BET) surface area method. Both materials were tested for the detection of lead (II) ions in aqueous media. Au nanoparticle incorporated CuBTC MOF showed great affinity and selectivity toward Pb ions and achieved a lower detection limit (LOD) of 1 nM/L by differential pulse voltammetry (DPV) technique, which is far below than MCL for Pb ions (0.03 μM/L) suggested by the United States (U.S.) Environmental Protection Agency (EPA) drinking water regulations.
在本研究中,通过常规溶剂热法在圆底烧瓶中于105°C合成了苯三甲酸铜金属有机框架(CuBTC MOF)和金纳米颗粒掺入的CuBTC MOF(Au@CuBTC),并将其置于油浴中。使用包括傅里叶变换红外光谱、拉曼光谱、X射线光电子能谱(XPS)和能量色散光谱(EDS)在内的X射线衍射(XRD)光谱方法对合成的CuBTC MOF和Au@CuBTC MOF进行结构表征。我们还使用场发射扫描电子显微镜(FE-SEM)等形态学技术以及包括循环伏安法(CV)和电化学阻抗谱(EIS)在内的电化学方法对它们进行表征。通过热重分析(TG/DTA)研究热稳定性,并通过布鲁诺尔-埃米特-泰勒(BET)表面积法测定N吸附-脱附等温线。对这两种材料进行了在水性介质中检测铅(II)离子的测试。金纳米颗粒掺入的CuBTC MOF对Pb离子表现出极大的亲和力和选择性,并通过差分脉冲伏安法(DPV)技术实现了1 nM/L的较低检测限(LOD),这远低于美国环境保护局(EPA)饮用水法规建议的Pb离子最大污染物水平(MCL)(0.03 μM/L)。