Suppr超能文献

基于量子理论、第一性原理计算和机器学习的光谱探针分子选择

Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning.

作者信息

Lansford Joshua L, Vlachos Dionisios G

机构信息

Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States.

出版信息

ACS Nano. 2020 Dec 22;14(12):17295-17307. doi: 10.1021/acsnano.0c07408. Epub 2020 Nov 16.

Abstract

Probe molecule vibrational spectra have a long history of being used to characterize materials including metals, oxides, metal-organic frameworks, and even human proteins. Furthermore, recent advances in machine learning have enabled computationally generated spectra to aid in detailed characterization of complex surfaces with probe molecules. Despite widespread use of probe molecules, the science of probe molecule selection is underdeveloped. Here, we develop physical concepts, including orbital interaction energy and the energy overlap integral, to explain and predict the ability of probe molecules to discriminate structural descriptors. We resolve the crystal orbital overlap population (COOP) to specific molecular orbitals and quantify their bonding character, which directly influences vibrational frequencies. Using only a single adsorbate calculation from density function theory (DFT), we compute the interaction energy of individual adsorbate molecular orbitals with adsorption site atomic orbitals across many different sites. Combining the molecular orbital resolved COOP and changes in orbital interaction energy enables probe molecule selection for improved discrimination of various sites. We demonstrate these concepts by comparing the predicted effectiveness of carbon monoxide (CO), nitric oxide (NO), and ethylene (CH) to probe Pt adsorption sites. Finally, using a previously developed machine learning framework, we show that models trained on hundreds of thousands of CH spectra, computed from DFT, which regress surface binding-type and generalized coordination number, outperform those trained using CO and NO spectra. A python package, pDOS_overlap, for implementing the electron density-based analysis on any combination of adsorbates and materials, is also made available.

摘要

探针分子振动光谱在表征包括金属、氧化物、金属有机框架甚至人类蛋白质在内的材料方面有着悠久的历史。此外,机器学习的最新进展使得通过计算生成的光谱能够辅助用探针分子对复杂表面进行详细表征。尽管探针分子被广泛使用,但探针分子选择的科学仍未充分发展。在这里,我们提出了包括轨道相互作用能和能量重叠积分在内的物理概念,以解释和预测探针分子区分结构描述符的能力。我们将晶体轨道重叠布居(COOP)分解为特定的分子轨道,并量化它们的成键特征,这直接影响振动频率。仅通过密度泛函理论(DFT)的单个吸附质计算,我们就能计算出单个吸附质分子轨道与许多不同位点的吸附位点原子轨道之间的相互作用能。结合分子轨道分辨的COOP和轨道相互作用能的变化,可以选择探针分子以更好地区分不同的位点。我们通过比较一氧化碳(CO)、一氧化氮(NO)和乙烯(CH)探测铂吸附位点的预测有效性来证明这些概念。最后,使用先前开发的机器学习框架,我们表明,在由DFT计算的数十万个CH光谱上训练的、回归表面结合类型和广义配位数的模型,优于使用CO和NO光谱训练的模型。我们还提供了一个Python包pDOS_overlap,用于对吸附质和材料的任何组合进行基于电子密度的分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验