Rajan Ajin, Pushkar Anoop P, Dharmalingam Balaji C, Varghese Jithin John
Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
iScience. 2023 Jun 7;26(7):107029. doi: 10.1016/j.isci.2023.107029. eCollection 2023 Jul 21.
Modern heterogeneous catalysis has benefitted immensely from computational predictions of catalyst structure and its evolution under reaction conditions, first-principles mechanistic investigations, and detailed kinetic modeling, which are rungs on a multiscale workflow. Establishing connections across these rungs and integration with experiments have been challenging. Here, operando catalyst structure prediction techniques using density functional theory simulations and thermodynamics calculations, molecular dynamics, and machine learning techniques are presented. Surface structure characterization by computational spectroscopic and machine learning techniques is then discussed. Hierarchical approaches in kinetic parameter estimation involving semi-empirical, data-driven, and first-principles calculations and detailed kinetic modeling via mean-field microkinetic modeling and kinetic Monte Carlo simulations are discussed along with methods and the need for uncertainty quantification. With these as the background, this article proposes a bottom-up hierarchical and closed loop modeling framework incorporating consistency checks and iterative refinements at each level and across levels.
现代多相催化从催化剂结构及其在反应条件下的演变的计算预测、第一性原理机理研究以及详细的动力学建模中受益匪浅,这些都是多尺度工作流程中的环节。在这些环节之间建立联系并与实验相结合一直具有挑战性。本文介绍了使用密度泛函理论模拟、热力学计算、分子动力学和机器学习技术的原位催化剂结构预测技术。接着讨论了通过计算光谱和机器学习技术进行的表面结构表征。还讨论了动力学参数估计中的分层方法,包括半经验、数据驱动和第一性原理计算,以及通过平均场微动力学建模和动力学蒙特卡罗模拟进行的详细动力学建模,同时还介绍了不确定性量化的方法和必要性。以此为背景,本文提出了一个自下而上的分层闭环建模框架,该框架在每个层次以及跨层次都包含一致性检查和迭代优化。