Zhao Xumei, Xia Caijuan, Li Lianbi, Wang Anxiang, Cao Dezhong, Zhang Baiyu, Fang Qinglong
School of Science, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China.
Materials Department, University of California, Santa Barbara, CA, 93106-5050, USA.
Sci Rep. 2024 Sep 8;14(1):20905. doi: 10.1038/s41598-024-67150-2.
First-principle calculations based on density functional theory are employed to investigate the impact of graphene insertion on the electronic properties and Schottky barrier of MoS/metals (Mg, Al, In, Cu, Ag, Au, Pd, Ti, and Sc) without deteriorating the intrinsic properties of the MoS layer. The results reveal that the charge transfer mainly occurs at the interface between the graphene and metal layers, with smaller transfer at the interface between bi-layer garphene or between graphene and MoS. And the tunneling barrier exists at the interface between graphene and MoS, which hinders electron injection from graphene to MoS. Importantly, the Schottky barrier height ( ) decreases upon graphene insertion into MoS/metal contacts. Specifically, for single-layer graphene, the of MoS contacted with Mg, In, Sc, and Ti are - 0.116 eV, - 0.116 eV, - 0.014 eV, and - 0.116 eV, respectively. Furthermore, with bilayer graphene, when by inserting bi-layer graphene, the negative n-type Schottky barrier of - 0.086 eV, - 0.114 eV, - 0.059 eV, - 0.008 eV, and - 0.0636 eV are observed for MoS contacted with the respective metals, respectively. These findings provide a practical guidance for developing and designing high-performance transition metal dichalcogenide nanoelectronic devices.
基于密度泛函理论的第一性原理计算被用于研究石墨烯插入对MoS/金属(Mg、Al、In、Cu、Ag、Au、Pd、Ti和Sc)的电子性质和肖特基势垒的影响,同时不会破坏MoS层的固有性质。结果表明,电荷转移主要发生在石墨烯与金属层之间的界面处,而在双层石墨烯之间或石墨烯与MoS之间的界面处转移较小。并且在石墨烯与MoS之间的界面处存在隧穿势垒,这阻碍了电子从石墨烯注入到MoS中。重要的是,当石墨烯插入到MoS/金属接触中时,肖特基势垒高度( )会降低。具体而言,对于单层石墨烯,与Mg、In、Sc和Ti接触的MoS的 分别为 - 0.116 eV、 - 0.116 eV、 - 0.014 eV和 - 0.116 eV。此外,对于双层石墨烯,当插入双层石墨烯时,与相应金属接触的MoS分别观察到 - 0.086 eV、 - 0.114 eV、 - 0.059 eV、 - 0.008 eV和 - 0.0636 eV的负n型肖特基势垒。这些发现为开发和设计高性能过渡金属二硫属化物纳米电子器件提供了实际指导。