Li Aodong, Dong Jianji, Wang Jian, Cheng Ziwei, Ho John S, Zhang Dawei, Wen Jing, Zhang Xu-Lin, Chan C T, Alù Andrea, Qiu Cheng-Wei, Chen Lin
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
Phys Rev Lett. 2020 Oct 30;125(18):187403. doi: 10.1103/PhysRevLett.125.187403.
Dynamically encircling exceptional points (EPs) can lead to chiral mode switching as the system parameters are varied along a path that encircles EP. However, conventional encircling protocols result in low transmittance due to path-dependent losses. Here, we present a paradigm to encircle EPs that includes fast Hamiltonian variations on the parameter boundaries, termed Hamiltonian hopping, enabling ultrahigh-efficiency chiral mode switching. This protocol avoids path-dependent loss and allows us to experimentally demonstrate nearly 90% efficiency at 1550 nm in the clockwise direction, overcoming a long-standing challenge of non-Hermitian optical systems and powering up new opportunities for EP physics.
随着系统参数沿着环绕例外点(EP)的路径变化,动态环绕例外点可导致手性模式切换。然而,由于与路径相关的损耗,传统的环绕协议会导致低透射率。在此,我们提出一种环绕例外点的范式,该范式在参数边界上包括快速哈密顿量变化,称为哈密顿量跳跃,可实现超高效率的手性模式切换。该协议避免了与路径相关的损耗,并使我们能够在顺时针方向上于1550纳米处通过实验证明近90%的效率,克服了非厄米光学系统长期存在的挑战,并为EP物理带来了新机遇。