Suppr超能文献

通过可解释的机器学习深入了解患者满意度。

Gaining Insights Into Patient Satisfaction Through Interpretable Machine Learning.

出版信息

IEEE J Biomed Health Inform. 2021 Jun;25(6):2215-2226. doi: 10.1109/JBHI.2020.3038194. Epub 2021 Jun 3.

Abstract

Patient satisfaction is a key performance indicator of patient-centered care and hospital reimbursement. To discover the major factors that affect patient experiences is considered as an effective way to formulate corrective actions. A patient during his/her healthcare journey interacts with multiple health professionals across different service units. The health-related data generated at each step of the journey is a valuable resource for extracting actionable insights. In particular, self-reported satisfaction survey and the associated patient electronic health records play an important role in the hospital-patient interaction analysis. In this paper, we propose an interpretable machine learning framework to formulate the patient satisfaction problem as a supervised learning task and utilize a mixed-integer programming model to identify the most influential factors. The proposed framework transforms heterogeneous data into human-understandable features and integrates feature transformation, variable selection, and coefficient learning into the optimization process. Therefore, it can achieve desirable model performance while maintaining excellent model interpretability, which paves the way for successful real-world applications.

摘要

患者满意度是患者为中心的护理和医院报销的关键绩效指标。发现影响患者体验的主要因素被认为是制定纠正措施的有效方法。患者在医疗保健过程中会与多个不同服务单元的医疗专业人员进行交互。在旅程的每一步生成的与健康相关的数据是提取可操作见解的有价值资源。特别是,自我报告的满意度调查和相关的患者电子健康记录在医院-患者交互分析中起着重要作用。在本文中,我们提出了一个可解释的机器学习框架,将患者满意度问题制定为监督学习任务,并利用混合整数规划模型来识别最有影响力的因素。所提出的框架将异构数据转换为人类可理解的特征,并将特征转换、变量选择和系数学习集成到优化过程中。因此,它可以在保持出色的模型可解释性的同时实现理想的模型性能,为成功的实际应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验