Suppr超能文献

通过轴向牵引动态激活吸附中间体以促进电化学CO还原

Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO Reduction.

作者信息

Wang Xinyue, Wang Yu, Sang Xiahan, Zheng Wanzhen, Zhang Shihan, Shuai Ling, Yang Bin, Li Zhongjian, Chen Jianmeng, Lei Lecheng, Adli Nadia Mohd, Leung Michael K H, Qiu Ming, Wu Gang, Hou Yang

机构信息

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China.

出版信息

Angew Chem Int Ed Engl. 2021 Feb 19;60(8):4192-4198. doi: 10.1002/anie.202013427. Epub 2021 Jan 29.

Abstract

Regulating the local environment and structure of metal center coordinated by nitrogen ligands (M-N ) to accelerate overall reaction dynamics of the electrochemical CO reduction reaction (CO RR) has attracted extensive attention. Herein, we develop an axial traction strategy to optimize the electronic structure of the M-N moiety and construct atomically dispersed nickel sites coordinated with four nitrogen atoms and one axial oxygen atom, which are embedded within the carbon matrix (Ni-N -O/C). The Ni-N -O/C electrocatalyst exhibited excellent CO RR performance with a maximum CO Faradic efficiency (FE) close to 100 % at -0.9 V. The CO FE could be maintained above 90 % in a wide range of potential window from -0.5 to -1.1 V. The superior CO RR activity is due to the Ni-N -O active moiety composed of a Ni-N site with an additional oxygen atom that induces an axial traction effect.

摘要

通过调控由氮配体配位的金属中心(M-N)的局部环境和结构来加速电化学CO还原反应(CO RR)的整体反应动力学已引起广泛关注。在此,我们开发了一种轴向牵引策略来优化M-N部分的电子结构,并构建与四个氮原子和一个轴向氧原子配位的原子分散镍位点,这些位点嵌入在碳基质中(Ni-N -O/C)。Ni-N -O/C电催化剂表现出优异的CO RR性能,在-0.9 V时最大CO法拉第效率(FE)接近100%。在-0.5至-1.1 V的宽电位窗口内,CO FE可保持在90%以上。优异的CO RR活性归因于由具有额外氧原子的Ni-N位点组成的Ni-N -O活性部分,该氧原子会诱导轴向牵引效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验