Suppr超能文献

通过MXene耦合在单个Ni-N-C位点上实现刚性轴向O配位诱导的自旋极化以促进电化学CO还原为CO

Rigidly Axial O Coordination-Induced Spin Polarization on Single Ni-N-C Site by MXene Coupling for Boosting Electrochemical CO Reduction to CO.

作者信息

Wei Guanping, Mao Zongchang, Liu Lingli, Hao Tiantian, Zhu Ling, Xu Simin, Wang Xijun, Tang Shaobin

机构信息

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.

Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52233-52243. doi: 10.1021/acsami.4c09592. Epub 2024 Sep 17.

Abstract

Regulating the spin states in transition-metal (TM)-based single-atom catalysts (SACs), such as the TM-NC configurations, is crucial for improving the catalytic activity. However, the role of spin in single Ni atoms facilitating the electrochemical CO reduction reaction (CORR) has been largely overlooked. Using first-principles simulations, we investigated the electrocatalytic performance of Ni-N-C SACs vertically stacked on the O-terminated MXene nanosheets for the CORR. The terminated O atoms on MXene axially interact with the Ni atom due to significant charge transfer between them. Unlike the pure Ni-N site, which lacks spin polarization, the newly formed Ni-NO configuration breaks the spin degeneracy of Ni d orbitals, dramatically lifting the energy level of spin-down d orbitals relative to that of spin-up d orbitals. As a result, the d electrons of Ni in the two spin channels are rearranged, leading to large net spin moments of 1.4 μ. Compared to the Ni-N site, the partially filled minority-spin d orbitals of Ni on Ni-NO weaken the occupied d-π* orbitals between Ni and *COOH, significantly stabilizing the key intermediate. The detailed reaction mechanisms and energetics show that four MXenes, namely, HfC, ZrC, HfC, and ZrC, can induce a large spin on the Ni site, thereby improving catalytic activity for CO reduction to CO, with a lower onset potential of about -0.75 V vs SHE compared to pure Ni SACs (-1.17 V) according to the potential-constant model with an explicit solvent environment.

摘要

调控基于过渡金属(TM)的单原子催化剂(SACs)中的自旋态,如TM-NC构型,对于提高催化活性至关重要。然而,自旋在促进电化学CO还原反应(CORR)的单个Ni原子中的作用在很大程度上被忽视了。我们使用第一性原理模拟,研究了垂直堆叠在O端接的MXene纳米片上的Ni-N-C SACs对CORR的电催化性能。MXene上的端接O原子由于它们之间的显著电荷转移而与Ni原子发生轴向相互作用。与缺乏自旋极化的纯Ni-N位点不同,新形成的Ni-NO构型打破了Ni d轨道的自旋简并性,使自旋向下的d轨道能级相对于自旋向上的d轨道能级显著提升。结果,Ni在两个自旋通道中的d电子重新排列,导致净自旋矩高达1.4 μ。与Ni-N位点相比,Ni-NO上Ni的部分填充的少数自旋d轨道削弱了Ni与COOH之间的占据d-π轨道,显著稳定了关键中间体。详细的反应机理和能量学表明,四种MXene,即HfC、ZrC、HfC和ZrC,可以在Ni位点上诱导大的自旋,从而提高将CO还原为CO的催化活性,根据具有明确溶剂环境的恒电位模型,与纯Ni SACs(-1.17 V)相比,起始电位约低-0.75V(相对于标准氢电极)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验