Suppr超能文献

人工智能方法在癌症监测和流行病学研究中的药学数据应用:系统评价。

Application of Artificial Intelligence Methods to Pharmacy Data for Cancer Surveillance and Epidemiology Research: A Systematic Review.

机构信息

Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD.

ICF Next, Fairfax, VA.

出版信息

JCO Clin Cancer Inform. 2020 Nov;4:1051-1058. doi: 10.1200/CCI.20.00101.

Abstract

PURPOSE

The implementation and utilization of electronic health records is generating a large volume and variety of data, which are difficult to process using traditional techniques. However, these data could help answer important questions in cancer surveillance and epidemiology research. Artificial intelligence (AI) data processing methods are capable of evaluating large volumes of data, yet current literature on their use in this context of pharmacy informatics is not well characterized.

METHODS

A systematic literature review was conducted to evaluate relevant publications within four domains (cancer, pharmacy, AI methods, population science) across PubMed, EMBASE, Scopus, and the Cochrane Library and included all publications indexed between July 17, 2008, and December 31, 2018. The search returned 3,271 publications, which were evaluated for inclusion.

RESULTS

There were 36 studies that met criteria for full-text abstraction. Of those, only 45% specifically identified the pharmacy data source, and 55% specified drug agents or drug classes. Multiple AI methods were used; 25% used machine learning (ML), 67% used natural language processing (NLP), and 8% combined ML and NLP.

CONCLUSION

This review demonstrates that the application of AI data methods for pharmacy informatics and cancer epidemiology research is expanding. However, the data sources and representations are often missing, challenging study replicability. In addition, there is no consistent format for reporting results, and one of the preferred metrics, F-score, is often missing. There is a resultant need for greater transparency of original data sources and performance of AI methods with pharmacy data to improve the translation of these results into meaningful outcomes.

摘要

目的

电子健康记录的实施和使用产生了大量且多样的数据,这些数据很难使用传统技术进行处理。然而,这些数据可以帮助回答癌症监测和流行病学研究中的一些重要问题。人工智能(AI)数据处理方法能够评估大量数据,但目前关于其在药学信息学这一背景下应用的文献尚未得到很好的描述。

方法

我们进行了一项系统的文献综述,以评估在四个领域(癌症、药学、AI 方法、人群科学)中来自 PubMed、EMBASE、Scopus 和 Cochrane Library 的相关文献,检索范围为 2008 年 7 月 17 日至 2018 年 12 月 31 日期间索引的所有出版物。搜索返回了 3271 篇出版物,对其进行了纳入评估。

结果

有 36 项研究符合全文摘要的纳入标准。其中,只有 45%的研究明确指出了药学数据来源,55%的研究指定了药物制剂或药物类别。使用了多种 AI 方法;25%使用机器学习(ML),67%使用自然语言处理(NLP),8%同时使用 ML 和 NLP。

结论

本综述表明,人工智能数据方法在药学信息学和癌症流行病学研究中的应用正在不断扩大。然而,数据来源和表示通常是缺失的,这给研究的可重复性带来了挑战。此外,报告结果的格式不一致,首选指标之一的 F 分数通常也缺失。因此,需要提高药学数据的 AI 方法的原始数据源和性能的透明度,以将这些结果转化为有意义的结果。

相似文献

7
A scoping review of artificial intelligence within pharmacy education.药学教育中人工智能的范围综述。
Am J Pharm Educ. 2024 Jan;88(1):100615. doi: 10.1016/j.ajpe.2023.100615. Epub 2023 Oct 30.

本文引用的文献

1
Learning from a retraction.从撤稿中吸取教训。
Lancet. 2020 Oct 10;396(10257):1056. doi: 10.1016/S0140-6736(20)31958-9. Epub 2020 Sep 17.
2
Ethics in Health Informatics.卫生信息学伦理。
Yearb Med Inform. 2020 Aug;29(1):26-31. doi: 10.1055/s-0040-1701966. Epub 2020 Apr 17.
7
Enhancing clinical concept extraction with contextual embeddings.利用上下文嵌入增强临床概念提取。
J Am Med Inform Assoc. 2019 Nov 1;26(11):1297-1304. doi: 10.1093/jamia/ocz096.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验