Ranchon Florence, Chanoine Sébastien, Lambert-Lacroix Sophie, Bosson Jean-Luc, Moreau-Gaudry Alexandre, Bedouch Pierrick
CNRS, TIMC UMR5525, MESP, Université Grenoble Alpes, F-38041 Grenoble, France; Hospices Civils de Lyon, Hôpital Lyon Sud, unité de pharmacie clinique oncologique, Pierre-Bénite, France; Université Lyon-1, EA 3738 CICLY, Oullins cedex F-69921, France.
CNRS, TIMC UMR5525, MESP, Université Grenoble Alpes, F-38041 Grenoble, France; Pôle Pharmacie, CHU Grenoble Alpes, F-38043 Grenoble, France; Université Grenoble Alpes, Faculté de Pharmacie, F-38041 Grenoble, France.
Int J Med Inform. 2023 Apr;172:104983. doi: 10.1016/j.ijmedinf.2022.104983. Epub 2022 Dec 30.
Artificial Intelligence (AI) offers potential opportunities to optimize clinical pharmacy services in community or hospital settings. The objective of this systematic literature review was to identify and analyse quantitative studies using or integrating AI for clinical pharmacy services.
A systematic review was conducted using PubMed/Medline and Web of Science databases, including all articles published from 2000 to December 2021. Included studies had to involve pharmacists in the development or use of AI-powered apps and tools..
19 studies using AI for clinical pharmacy services were included in this review. 12 out of 19 articles (63.1%) were published in 2020 or 2021. Various methodologies of AI were used, mainly machine learning techniques and subsets (natural language processing and deep learning). The datasets used to train the models were mainly extracted from electronic medical records (6 studies, 32%). Among clinical pharmacy services, medication order review was the service most targeted by AI-powered apps and tools (9 studies), followed by health product dispensing (4 studies), pharmaceutical interviews and therapeutic education (2 studies). The development of these tools mainly involved hospital pharmacists (12/19 studies).
The development of AI-powered apps and tools for clinical pharmacy services is just beginning. Pharmacists need to keep abreast of these developments in order to position themselves optimally while maintaining their human relationships with healthcare teams and patients. Significant efforts have to be made, in collaboration with data scientists, to better assess whether AI-powered apps and tools bring value to clinical pharmacy services in real practice.
人工智能(AI)为优化社区或医院环境中的临床药学服务提供了潜在机会。本系统文献综述的目的是识别和分析使用或整合人工智能进行临床药学服务的定量研究。
使用PubMed/Medline和Web of Science数据库进行系统综述,纳入2000年至2021年12月发表的所有文章。纳入的研究必须让药剂师参与人工智能驱动的应用程序和工具的开发或使用。
本综述纳入了19项使用人工智能进行临床药学服务的研究。19篇文章中有12篇(63.1%)发表于2020年或2021年。使用了各种人工智能方法,主要是机器学习技术及其子集(自然语言处理和深度学习)。用于训练模型的数据集主要从电子病历中提取(6项研究,32%)。在临床药学服务中,医嘱审核是人工智能驱动的应用程序和工具最常针对的服务(9项研究),其次是保健产品调配(4项研究)、药学访谈和治疗教育(2项研究)。这些工具的开发主要涉及医院药剂师(12/19项研究)。
用于临床药学服务的人工智能驱动的应用程序和工具的开发才刚刚开始。药剂师需要跟上这些发展,以便在与医疗团队和患者保持人际关系的同时,最佳地定位自己。必须与数据科学家合作做出重大努力,以更好地评估人工智能驱动的应用程序和工具在实际应用中是否能为临床药学服务带来价值。