Igenomix Italy, Marostica, Italy.
Igenomix Foundation, INCLIVA, Valencia, Spain.
Hum Reprod Update. 2021 Feb 19;27(2):254-279. doi: 10.1093/humupd/dmaa044.
Our genetic code is now readable, writable and hackable. The recent escalation of genome-wide sequencing (GS) applications in population diagnostics will not only enable the assessment of risks of transmitting well-defined monogenic disorders at preconceptional stages (i.e. carrier screening), but also facilitate identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting reproductive fitness. Through GS, the acquisition and curation of reproductive-related findings will warrant the expansion of genetic assessment to new areas of genomic prediction of reproductive phenotypes, pharmacogenomics and molecular embryology, further boosting our knowledge and therapeutic tools for treating infertility and improving women's health.
In this article, we review current knowledge and potential development of preconception genome analysis aimed at detecting reproductive and individual health risks (recessive genetic disease and medically actionable secondary findings) as well as anticipating specific reproductive outcomes, particularly in the context of IVF. The extension of reproductive genetic risk assessment to the general population and IVF couples will lead to the identification of couples who carry recessive mutations, as well as sub-lethal conditions prior to conception. This approach will provide increased reproductive autonomy to couples, particularly in those cases where preimplantation genetic testing is an available option to avoid the transmission of undesirable conditions. In addition, GS on prospective infertility patients will enable genome-wide association studies specific for infertility phenotypes such as predisposition to premature ovarian failure, increased risk of aneuploidies, complete oocyte immaturity or blastocyst development failure, thus empowering the development of true reproductive precision medicine.
Searches of the literature on PubMed Central included combinations of the following MeSH terms: human, genetics, genomics, variants, male, female, fertility, next generation sequencing, genome exome sequencing, expanded carrier screening, secondary findings, pharmacogenomics, controlled ovarian stimulation, preconception, genetics, genome-wide association studies, GWAS.
Through PubMed Central queries, we identified a total of 1409 articles. The full list of articles was assessed for date of publication, limiting the search to studies published within the last 15 years (2004 onwards due to escalating research output of next-generation sequencing studies from that date). The remaining articles' titles were assessed for pertinence to the topic, leaving a total of 644 articles. The use of preconception GS has the potential to identify inheritable genetic conditions concealed in the genome of around 4% of couples looking to conceive. Genomic information during reproductive age will also be useful to anticipate late-onset medically actionable conditions with strong genetic background in around 2-4% of all individuals. Genetic variants correlated with differential response to pharmaceutical treatment in IVF, and clear genotype-phenotype associations are found for aberrant sperm types, oocyte maturation, fertilization or pre- and post-implantation embryonic development. All currently known capabilities of GS at the preconception stage are reviewed along with persisting and forthcoming barriers for the implementation of precise reproductive medicine.
The expansion of sequencing analysis to additional monogenic and polygenic traits may enable the development of cost-effective preconception tests capable of identifying underlying genetic causes of infertility, which have been defined as 'unexplained' until now, thus leading to the development of a true personalized genomic medicine framework in reproductive health.
我们的遗传密码现在可读、可写、可篡改。全基因组测序(GS)在人群诊断中的应用最近不断升级,这不仅将使我们能够在受孕前阶段评估明确的单基因疾病的传播风险(即携带者筛查),还将有助于识别多因素遗传易感性与亚致死性病理相关的风险,包括那些影响生殖健康的风险。通过 GS,可以获取和管理与生殖相关的发现,从而将遗传评估扩展到生殖表型的基因组预测、药物基因组学和分子胚胎学等新领域,进一步提高我们治疗不孕症和改善女性健康的知识和治疗工具。
本文综述了目前关于孕前基因组分析的知识和潜在发展,旨在检测生殖和个体健康风险(隐性遗传疾病和可治疗的次要发现),并预测特定的生殖结果,特别是在体外受精(IVF)的背景下。将生殖遗传风险评估扩展到普通人群和 IVF 夫妇,将识别出携带隐性突变以及在受孕前就存在亚致死性疾病的夫妇。这种方法将为夫妇提供更大的生殖自主权,特别是在那些可以选择进行胚胎植入前遗传学检测以避免不良疾病传播的情况下。此外,对预期不孕患者进行 GS 将使针对不孕表型的全基因组关联研究成为可能,例如易发生卵巢早衰、非整倍体风险增加、卵母细胞完全不成熟或囊胚发育失败的倾向,从而为真正的生殖精准医学提供支持。
对 PubMed Central 中的文献进行了 MeSH 术语的组合搜索,包括:人类、遗传学、基因组学、变异、男性、女性、生育能力、下一代测序、基因组外显子测序、扩展携带者筛查、次要发现、药物基因组学、控制性卵巢刺激、孕前、遗传学、全基因组关联研究、GWAS。
通过 PubMed Central 查询,我们共检索到 1409 篇文章。根据发表日期对全文进行评估,将搜索范围限制在过去 15 年内发表的研究(2004 年起,因为从那时起下一代测序研究的研究成果不断增加)。评估了剩余文章的标题与主题的相关性,最终留下了 644 篇文章。在生殖年龄使用孕前 GS 有潜力识别出大约 4%正在备孕的夫妇基因组中隐藏的遗传疾病。生殖年龄的基因组信息也将有助于预测大约 2-4%的所有个体中具有强烈遗传背景的迟发性可治疗的次要发现。在 IVF 中,与药物治疗反应相关的遗传变异以及与异常精子类型、卵母细胞成熟、受精或胚胎前和植入后发育相关的明确基因型-表型关联已经被发现。本文回顾了目前在孕前阶段进行 GS 的所有已知能力,以及实施精准生殖医学所面临的持续存在的和即将出现的障碍。
将测序分析扩展到其他单基因和多基因特征,可能使我们能够开发出具有成本效益的孕前测试,这些测试能够识别出目前被定义为“不明原因”的不孕的潜在遗传原因,从而在生殖健康领域发展出真正的个性化基因组医学框架。