Suppr超能文献

ConceptWAS:一种用于早期识别新冠病毒疾病呈现症状的高通量方法。

ConceptWAS: a high-throughput method for early identification of COVID-19 presenting symptoms.

作者信息

Zhao Juan, Grabowska Monika E, Kerchberger Vern Eric, Smith Joshua C, Eken H Nur, Feng QiPing, Peterson Josh F, Rosenbloom S Trent, Johnson Kevin B, Wei Wei-Qi

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN.

Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN.

出版信息

medRxiv. 2020 Nov 10:2020.11.06.20227165. doi: 10.1101/2020.11.06.20227165.

Abstract

OBJECTIVE

Identifying symptoms highly specific to COVID-19 would improve the clinical and public health response to infectious outbreaks. Here, we describe a high-throughput approach - Concept-Wide Association Study (ConceptWAS) that systematically scans a disease's clinical manifestations from clinical notes. We used this method to identify symptoms specific to COVID-19 early in the course of the pandemic.

METHODS

Using the Vanderbilt University Medical Center (VUMC) EHR, we parsed clinical notes through a natural language processing pipeline to extract clinical concepts. We examined the difference in concepts derived from the notes of COVID-19-positive and COVID-19-negative patients on the PCR testing date. We performed ConceptWAS using the cumulative data every two weeks for early identifying specific COVID-19 symptoms.

RESULTS

We processed 87,753 notes 19,692 patients (1,483 COVID-19-positive) subjected to COVID-19 PCR testing between March 8, 2020, and May 27, 2020. We found 68 clinical concepts significantly associated with COVID-19. We identified symptoms associated with increasing risk of COVID-19, including "absent sense of smell" (odds ratio [OR] = 4.97, 95% confidence interval [CI] = 3.21-7.50), "fever" (OR = 1.43, 95% CI = 1.28-1.59), "with cough fever" (OR = 2.29, 95% CI = 1.75-2.96), and "ageusia" (OR = 5.18, 95% CI = 3.02-8.58). Using ConceptWAS, we were able to detect loss sense of smell or taste three weeks prior to their inclusion as symptoms of the disease by the Centers for Disease Control and Prevention (CDC).

CONCLUSION

ConceptWAS is a high-throughput approach for exploring specific symptoms of a disease like COVID-19, with a promise for enabling EHR-powered early disease manifestations identification.

摘要

目的

识别新冠病毒病(COVID-19)高度特异的症状将改善对传染病暴发的临床和公共卫生应对。在此,我们描述一种高通量方法——概念全关联研究(ConceptWAS),该方法可从临床记录中系统扫描一种疾病的临床表现。我们使用此方法在疫情早期识别出COVID-19特异的症状。

方法

利用范德堡大学医学中心(VUMC)的电子健康记录(EHR),我们通过自然语言处理流程解析临床记录以提取临床概念。我们检查了在PCR检测日期,COVID-19阳性和COVID-19阴性患者的记录中所衍生概念的差异。我们每两周使用累积数据进行一次ConceptWAS,以早期识别COVID-19的特异症状。

结果

我们处理了2020年3月8日至2020年5月27日期间接受COVID-19 PCR检测的19692例患者(1483例COVID-19阳性)的87753份记录。我们发现68个临床概念与COVID-19显著相关。我们识别出与COVID-19风险增加相关的症状,包括“嗅觉丧失”(优势比[OR]=4.97,95%置信区间[CI]=3.21 - 7.50)、“发热”(OR = 1.43,95% CI = 1.28 - 1.59)、“伴有咳嗽的发热”(OR = 2.29,95% CI = 1.75 - 2.96)和“味觉丧失”(OR = 5.18,95% CI = 3.02 - 8.58)。通过ConceptWAS,我们能够在嗅觉或味觉丧失被美国疾病控制与预防中心(CDC)列为该疾病症状的三周前检测到它们。

结论

ConceptWAS是一种用于探索如COVID-19这类疾病特异症状的高通量方法,有望实现基于电子健康记录的疾病早期表现识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd7d/7668764/dc97cb480e9a/nihpp-2020.11.06.20227165-f0003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验