Suppr超能文献

基于粗糙度-长度的颅内 EEG 特征分析与癫痫发作预测。

Roughness-Length-Based Characteristic Analysis of Intracranial EEG and Epileptic Seizure Prediction.

机构信息

School of Information and Electronic Engineering, Shandong Technology and Business University, 191 Binhai Middle Road, Yantai 264005, P. R. China.

School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, P. R. China.

出版信息

Int J Neural Syst. 2020 Dec;30(12):2050072. doi: 10.1142/S0129065720500720. Epub 2020 Nov 16.

Abstract

To identify precursors of epileptic seizures, an EEG characteristic analysis is carried out based on a roughness-length method, where fractal dimensions and intercept values are extracted to measure the structure complexity and the amplitude roughness of EEG signals in different phases. Using the significant changes of the fractal dimension and intercept in the preictal phase with respect to those in the interictal phase, a patient-specific seizure prediction algorithm is then proposed by combining with a gradient boosting classifier. The probabilistic outputs of the trained gradient boosting classifier are further processed by threshold comparison and rule-based judgment to distinguish preictal EEG from interictal EEG and to generate seizure alerts. The prediction algorithm was evaluated on 20 patients' intracranial EEG recordings from the Freiburg EEG database, which contains the preictal periods of 65 seizures and 499[Formula: see text]h interictal EEG. Setting the seizure prediction horizon as 2[Formula: see text]min, averaged sensitivity values of 90.42% and 91.67% with averaged false prediction rates of 0.12/h and 0.10/h were achieved for seizure occurrence periods of 30 and 50[Formula: see text]min, respectively. These results demonstrate the ability of fractal dimension and intercept metrics in predicting the occurrence of seizures.

摘要

为了识别癫痫发作的前兆,我们采用粗糙度长度法进行 EEG 特征分析,提取分形维数和截距值,以测量不同阶段 EEG 信号的结构复杂性和幅度粗糙度。然后,结合梯度提升分类器,利用痫性发作前相对于发作间期分形维数和截距的显著变化,提出了一种基于患者个体的癫痫发作预测算法。通过阈值比较和基于规则的判断进一步处理训练好的梯度提升分类器的概率输出,以区分痫性发作前和发作间期的 EEG,并生成癫痫发作警报。该预测算法在弗莱堡 EEG 数据库的 20 名患者的颅内 EEG 记录上进行了评估,其中包含 65 次癫痫发作和 499.5h 的发作间期 EEG。将癫痫发作预测时间设为 2min,对于 30min 和 50min 的癫痫发作时间段,平均敏感性分别为 90.42%和 91.67%,平均假阳性率分别为 0.12/h 和 0.10/h。这些结果表明分形维数和截距指标在预测癫痫发作发生方面具有一定的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验